2017 INFINITI QX30 NEW MODEL TRAINING
TABLE OF CONTENTS

Course Objectives

Course Procedures: 2017 Infiniti QX30 New Model Training

SECTION 1: Text

Introduction

General Information

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Dimensions</td>
<td>8</td>
</tr>
<tr>
<td>Model Variation</td>
<td>9</td>
</tr>
<tr>
<td>Vehicle Information Number</td>
<td>9</td>
</tr>
<tr>
<td>SIS Code</td>
<td>10</td>
</tr>
<tr>
<td>VIN Locations</td>
<td>10</td>
</tr>
<tr>
<td>Data Stickers</td>
<td>10</td>
</tr>
<tr>
<td>Engine Codes</td>
<td>10</td>
</tr>
<tr>
<td>Access Points</td>
<td>10</td>
</tr>
<tr>
<td>Jacking Points</td>
<td>11</td>
</tr>
<tr>
<td>Fuel Requirements</td>
<td>11</td>
</tr>
<tr>
<td>Battery Charging</td>
<td>11</td>
</tr>
<tr>
<td>Main and Auxiliary Battery Replacement</td>
<td>12</td>
</tr>
<tr>
<td>Jump Start Procedure</td>
<td>12</td>
</tr>
<tr>
<td>Towing</td>
<td>12</td>
</tr>
</tbody>
</table>

PDI, Service, and Maintenance

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-delivery Inspection</td>
<td>13</td>
</tr>
<tr>
<td>Service and Maintenance</td>
<td>14</td>
</tr>
<tr>
<td>Fluid Specifications</td>
<td>15</td>
</tr>
<tr>
<td>Coolant Draining</td>
<td>16</td>
</tr>
<tr>
<td>Exhaust Pipe Repair</td>
<td>17</td>
</tr>
<tr>
<td>Programming and Configuration Processes</td>
<td>18</td>
</tr>
</tbody>
</table>

Electrical and Power Control

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Body Control Module</td>
<td>19</td>
</tr>
<tr>
<td>Electronic Ignition Switch</td>
<td>20</td>
</tr>
<tr>
<td>Batteries and Alternator</td>
<td>20</td>
</tr>
<tr>
<td>Energy Management System</td>
<td>21</td>
</tr>
<tr>
<td>Engine ON Energy Management</td>
<td>22</td>
</tr>
<tr>
<td>Engine OFF Energy Management</td>
<td>22</td>
</tr>
<tr>
<td>Stop/Start Energy Management</td>
<td>23</td>
</tr>
<tr>
<td>Stop/Start Cycle</td>
<td>24</td>
</tr>
<tr>
<td>Network Architecture</td>
<td>25</td>
</tr>
<tr>
<td>Network Overview</td>
<td>25</td>
</tr>
<tr>
<td>Topology</td>
<td>25</td>
</tr>
<tr>
<td>Network Divisions</td>
<td>28</td>
</tr>
<tr>
<td>Gateways</td>
<td>28</td>
</tr>
<tr>
<td>OBD Socket</td>
<td>28</td>
</tr>
<tr>
<td>Potential Distributors</td>
<td>29</td>
</tr>
<tr>
<td>1.6L & 2.0L Turbo Engine</td>
<td>31</td>
</tr>
<tr>
<td>Overview</td>
<td>31</td>
</tr>
<tr>
<td>Specifications</td>
<td>32</td>
</tr>
<tr>
<td>Service Point</td>
<td>32</td>
</tr>
<tr>
<td>Component Locations</td>
<td>33</td>
</tr>
<tr>
<td>Crank Pulley</td>
<td>34</td>
</tr>
<tr>
<td>Camshaft Timing</td>
<td>34</td>
</tr>
<tr>
<td>Crankshaft Position</td>
<td>35</td>
</tr>
<tr>
<td>Stop/Start System</td>
<td>31</td>
</tr>
<tr>
<td>Twin Battery Management</td>
<td>37</td>
</tr>
<tr>
<td>GE7F30A Dual Clutch Transaxle</td>
<td>38</td>
</tr>
<tr>
<td>Overview</td>
<td>38</td>
</tr>
<tr>
<td>Gear Ratios</td>
<td>38</td>
</tr>
<tr>
<td>Main Components</td>
<td>39</td>
</tr>
<tr>
<td>Gear Train Operation</td>
<td>39</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Gear Train Construction</td>
<td>40</td>
</tr>
<tr>
<td>Dual Clutch Operation</td>
<td>41</td>
</tr>
<tr>
<td>Dual Clutch Construction</td>
<td>41</td>
</tr>
<tr>
<td>Power Flow</td>
<td>42</td>
</tr>
<tr>
<td>Reverse Gear Operation</td>
<td>44</td>
</tr>
<tr>
<td>Control Valve Assembly</td>
<td>45</td>
</tr>
<tr>
<td>Shift Selector</td>
<td>45</td>
</tr>
<tr>
<td>Gear Shift</td>
<td>46</td>
</tr>
<tr>
<td>Oil Supply</td>
<td>46</td>
</tr>
<tr>
<td>Transaxle Cooling</td>
<td>47</td>
</tr>
<tr>
<td>Park Pawl</td>
<td>47</td>
</tr>
<tr>
<td>Maintenance</td>
<td>48</td>
</tr>
<tr>
<td>Diagnosis and Repair</td>
<td>48</td>
</tr>
<tr>
<td>All-wheel Drive</td>
<td>49</td>
</tr>
<tr>
<td>System Integration</td>
<td>50</td>
</tr>
<tr>
<td>AWD Control Unit</td>
<td>50</td>
</tr>
<tr>
<td>AWD Solenoid Valve</td>
<td>50</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>50</td>
</tr>
<tr>
<td>Suspension</td>
<td>51</td>
</tr>
<tr>
<td>Front Suspension</td>
<td>52</td>
</tr>
<tr>
<td>Rear Suspension</td>
<td>53</td>
</tr>
<tr>
<td>Alignment Angles</td>
<td>54</td>
</tr>
<tr>
<td>Tire Pressure Monitoring System</td>
<td>55</td>
</tr>
<tr>
<td>System Operation</td>
<td>55</td>
</tr>
<tr>
<td>TPMS Reset</td>
<td>55</td>
</tr>
<tr>
<td>Sensor ID Registration</td>
<td>56</td>
</tr>
<tr>
<td>Auto-learn</td>
<td>56</td>
</tr>
<tr>
<td>Service Points</td>
<td>56</td>
</tr>
<tr>
<td>Tires</td>
<td>57</td>
</tr>
<tr>
<td>Puncture Repair</td>
<td>57</td>
</tr>
</tbody>
</table>
Winter Tires ... 57
Snow Chains .. 57
Wheels ... 58
Accent Wheels... 58
Brake System ... 60
Brake Control System ... 61
System Overview ... 61
Hill Start Assist .. 61
Forward Emergency Braking .. 62
Other Functionality ... 63
Electric Parking Brake .. 66
Parking Brake Actuator .. 66
System Operation ... 67
Emergency Mode .. 67
Fail Safe ... 67
Service Points .. 67
Steering ... 68
Fail Safe ... 69
Workshop Mode .. 69
EPS Control Unit Replacement .. 69
Sonar System and Park Assist .. 70
System Types ... 70
Parking Sensor Settings .. 71
Sonar Ranges ... 72
Park Assist ... 73
System Diagnosis ... 73
Sonar Control Unit Replacement .. 73
Automatic Speed Control ... 74
Intelligent Cruise Control .. 75
Long Range Radar Alignment .. 75

Driver Assistance Systems ... 76

Components ... 76
Lane Departure Warning .. 78
Blind Spot Warning .. 78
Front Camera Adjustment .. 79
Rearview Camera .. 80

Restraints .. 81

Air Bag Module ... 82
Air Bag Control Unit Replacement ... 82
Crash/Impact Sensors ... 82
Pyrofuse .. 83
Front Passenger Seat Occupancy Detection ... 84
Seat Belts ... 85
Air Bags ... 86
Emergency Call ... 86

HVAC .. 38

Refrigerant Circuit .. 87
Control Panel ... 89
Air Conditioning Filter ... 90
Air Quality Sensor ... 90
Outside Air Temperature ... 91
Interior Temperature Sensor ... 91
Sunload Sensor ... 92
Eco Stop/Start Function ... 92
Auto Air Recirculation Mode .. 92
Diagnosis .. 92

Driver Controls ... 93

Steering Wheel Combination Switch ... 94
Central Switch Panel .. 95
Security

Component Locations ... 115
Door Locks .. 116
Fuel Lid Assembly ... 118
Emergency Fuel Lid Lock Release ... 119
Emergency Tailgate Release ... 119
Door Lock Key Control .. 120
Emergency Mechanical Key ... 120
Key Battery Replacement ... 120
Central Locking System .. 121
Intelligent Key System ... 123
Immobilizer ... 124
Vehicle Alarm .. 124

Glass and Windows

Windshield Glass ... 125
Interior Mirror .. 125
Door Mirrors ... 126
Power Windows ... 127
Heated Rear Glass .. 129
Heated Washer System ... 129

Paint .. 130

Body ... 130

Noise, Vibration, and Harshness (NVH) 131
Styling ... 132
Emblem ... 133
Rear Spoiler ... 133
Kick Plate .. 134
Back Door .. 134

Audio, Visual, and Navigation ... 135

InTouch ... 135
Display Control Unit..136
NAVI Control Unit..137
AV Control Unit..137
External Data Input Box (SD Card)..138
External Data Input Box (USB)..138
Active Noise Control Unit..138
Active Noise Cancellation..139
Active Sound Enhancement..139
On-board Diagnosis ..140
Around View Monitor ...142
Navigation System...142

SECTION 2: Modules

Sign-off sheet
Module 1: QX30 Discovery
Module 2: CAN & Network Architecture
Module 3: Energy Management System
Module 4: DCT Fluid Level Check
Module 5: Restraint System
Module 6: AWD Familiarization
Module 7: QX30 Intelligent Key Entry System
Module 8: DAS and Front Camera Familiarization
Module 9: Brake Service
Module 10: Tire Pressure Monitoring

SECTION 3: Notes
COURSE OBJECTIVES

Upon completion of this training program, given a 2017 Infiniti QX30, you will be able to:

- Explain the function and operation of the features and controls of the 2017 Infiniti QX30.
- Explain the CAN architecture and CAN Potential Distributor Electrical Connector function.
- Identify the components used by the energy management system and their functions.
- Correctly perform transaxle fluid level inspection, interpret the results, and determine if the level should be adjusted.
- Identify additional service required after replacing the Air Bag Diagnosis Sensor and the Occupant Classification System control unit.
- Monitor system functions of the AWD system using CONSULT, and identify additional service when replacing the control unit or components.
- Identify the various components of the Intelligent Key Entry System, their functions, locations, and special service requirements.
- Explain the function and service requirements of the front camera unit.
- Explain the operation of the electronic parking brake and unique service brake features.
- Explain the operation of the TPMS system, reset the TPMS reference pressure values, identify the ID numbers for each tire pressure sensor, and write the ID numbers to the low tire pressure warning control unit.
- Use CONSULT to check components and monitor the operation of the Evaporative Emissions System (EVAP).
COURSE PROCEDURES:
2017 INFINITI QX30 NEW MODEL TRAINING

Infiniti Competency Based Training:

Class starts promptly at 9:00 AM. Please be in your seat and ready to begin at 9:00 AM. Silence your cell phone.

Class ends when all the modules on your Course Sign Off sheet are initialed by the instructor. Nissan and Infiniti design courses so that most technicians should be able to complete the modules in the time provided for the course.

Experienced technicians should be able to complete all the modules in the two days scheduled for the class. If you are unable to complete the course requirements in the time provided, the instructor will discuss options available for you to receive course credit. You are responsible for learning how to perform the diagnostic procedures featured in this course. It is important that you take as much time as you need to learn the skills presented in the course worksheets. If you cannot complete the modules in the time provided, the instructor will work with you and your dealership to help you complete the course.

Text:

The text contains information relating the features and technology found on the 2017 Infiniti QX30. Some of the questions in the worksheets can be answered using the text. You will not have the opportunity to read the text thoroughly during this class, so please save the text as a resource to answer questions about the technology and systems unique to this vehicle.

Modules:

1. Begin the module by reading the Objective, Relevance, Resources, and Skill Check information on the first page.

2. Contact the instructor if you cannot locate the resources or if the vehicle has a problem that seems unrelated to the module. (ie: dead battery)

3. You will probably be working with one or more technicians. Follow these basic guidelines to work effectively as a team:
 - Take responsibility to understand and perform each step of the worksheet yourself.
 - If using CONSULT-III + or other tools, be sure to check on-screen results yourself and hand the tool to the other technician(s) so they can also confirm test results.
 - If you are expected to test a component or remove and inspect parts, perform those procedures yourself and give the same opportunity to your co-workers.
 - Be patient. Everyone works at different speeds. You are responsible to perform each module objective – and you are responsible to insure the technician(s) working with you have also completed the ‘Skill Check’.
- Complete all the questions on the worksheet. In some cases, the worksheet may give you the opportunity to skip steps, for example – you may not need to follow instructions for booting CONSULT-III + if you are already confident using the tool. If your co-workers wish to complete those instructions, be patient as they complete those steps.

- Treat the training center vehicles as if they were customers’ cars. However, if you damage anything while performing the module, tell the instructor right away. Some components such as trim pieces or wire connections may break during testing. We expect these occasional problems and need to know about them as soon as they occur.

- Return the vehicle to the condition it should be in for the next team of technicians to complete the module. For example: Reset bugs if applicable, return tools to the bench or tool box, and straighten up the work area.

- Contact the instructor when you have completed the module and are confident you can perform the ‘Skill Check’ noted on the first page. Expect the instructor to review your worksheet and confirm that you have completed the objective. Tell the instructor if you feel you need more practice. If possible, the instructor will provide you with additional information or give you the opportunity to work on the vehicle later in the day.

Resources:

Resources may include ASIST, CONSULT-III +, the ESM, Special Service Tools (SST), hand tools, DVOMs, and vehicle parts. If the ASIST terminal is not working properly or is not updated, contact the instructor.

Monitor the battery power for CONSULT-III + and connect it to the charger as needed. For this course we expect you to be comfortable using CONSULT-III + for testing the CAN system and for accessing Self Diagnosis, Data Monitor, Active Test, and Work Support. Contact the instructor if you are not familiar with using these applications.

Contact the instructor if you have questions about using the listed resources or there is a problem with any of the resources you will need to complete the module.

PowerPoint Notes:

The PowerPoint slides are reprinted in your Technician Workbook. Refer to the Notes section of the book to follow the classroom discussion. The classroom discussion highlights information you will practice during workshop modules. Make notes and ask questions during the discussion and you will learn information that will help you complete the worksheet objectives.
Technician Creed and Code of Repair

This vehicle is the personal property of the customer. The customer’s desire is: I correctly service / repair their vehicle today.

My desire is: He / She returns to my place of business for additional service and repairs unrelated to today’s visit. It is my choice regarding the quality of repair I make today. I will do all I can to gain the customer’s trust while servicing and repairing their vehicle.

ATTITUDE IS EVERYTHING!
QX30 New Model Training
QX30 New Model Training

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>General Information</td>
<td>8</td>
</tr>
<tr>
<td>Vehicle dimensions</td>
<td>8</td>
</tr>
<tr>
<td>Vehicle variation</td>
<td>9</td>
</tr>
<tr>
<td>Vehicle information number</td>
<td>9</td>
</tr>
<tr>
<td>SIS code (Infiniti model variation code)</td>
<td>10</td>
</tr>
<tr>
<td>VIN locations</td>
<td>10</td>
</tr>
<tr>
<td>Data stickers</td>
<td>10</td>
</tr>
<tr>
<td>Engine codes</td>
<td>10</td>
</tr>
<tr>
<td>Access points</td>
<td>10</td>
</tr>
<tr>
<td>Jacking points</td>
<td>11</td>
</tr>
<tr>
<td>Fuel requirements</td>
<td>11</td>
</tr>
<tr>
<td>Battery charging</td>
<td>11</td>
</tr>
<tr>
<td>Main and auxiliary battery replacement</td>
<td>12</td>
</tr>
<tr>
<td>Jump start procedure</td>
<td>12</td>
</tr>
<tr>
<td>Towing</td>
<td>12</td>
</tr>
<tr>
<td>PDI, Service and Maintenance</td>
<td>13</td>
</tr>
<tr>
<td>Pre delivery inspection</td>
<td>13</td>
</tr>
<tr>
<td>Service and maintenance</td>
<td>14</td>
</tr>
<tr>
<td>Fluid specifications</td>
<td>15</td>
</tr>
<tr>
<td>Coolant draining</td>
<td>16</td>
</tr>
<tr>
<td>Exhaust pipe repair</td>
<td>17</td>
</tr>
<tr>
<td>Programming and configuration processes</td>
<td>18</td>
</tr>
<tr>
<td>Electric and Power Control</td>
<td>19</td>
</tr>
<tr>
<td>Body control module</td>
<td>19</td>
</tr>
<tr>
<td>Electronic ignition switch</td>
<td>20</td>
</tr>
<tr>
<td>Batteries and alternator</td>
<td>20</td>
</tr>
<tr>
<td>Energy management system</td>
<td>21</td>
</tr>
<tr>
<td>Engine ON energy management</td>
<td>22</td>
</tr>
<tr>
<td>Engine OFF energy management</td>
<td>22</td>
</tr>
<tr>
<td>Stop/start energy management</td>
<td>23</td>
</tr>
<tr>
<td>Stop/start cycle</td>
<td>24</td>
</tr>
<tr>
<td>Network Architecture</td>
<td>25</td>
</tr>
<tr>
<td>Network overview</td>
<td>25</td>
</tr>
<tr>
<td>Topology</td>
<td>25</td>
</tr>
<tr>
<td>Network divisions</td>
<td>28</td>
</tr>
<tr>
<td>Gateways</td>
<td>28</td>
</tr>
<tr>
<td>OBD socket</td>
<td>28</td>
</tr>
<tr>
<td>Potential distributors</td>
<td>29</td>
</tr>
<tr>
<td>1.6 L & 2.0L Turbo Engine</td>
<td>31</td>
</tr>
<tr>
<td>Overview</td>
<td>31</td>
</tr>
<tr>
<td>Specifications</td>
<td>32</td>
</tr>
<tr>
<td>Service point</td>
<td>32</td>
</tr>
<tr>
<td>Component locations</td>
<td>33</td>
</tr>
<tr>
<td>Crank pulley</td>
<td>34</td>
</tr>
<tr>
<td>Camshaft timing</td>
<td>34</td>
</tr>
<tr>
<td>Crankshaft position</td>
<td>35</td>
</tr>
</tbody>
</table>

This document provides comprehensive information on the QX30 New Model Training, covering various aspects such as general information, vehicle data, electric and power control, network architecture, and service and maintenance procedures. Each section is detailed with specific topics and pages for easier reference.
Stop/Start System 36
Twin battery management 37

GE7F30A Dual Clutch Transmission 38
Overview 38
Gear ratios 38
Main components Gear 39
train operation Gear 39
train construction Dual 40
clutch operation Dual 41
clutch construction 41
Power flow 42
Reverse gear operation 44
Control valve assembly 45
Shift selector 45
Gear shift 46
Oil supply Transmission 46
cooling Park pawl 47
Maintenance 47
Diagnosis and repair 48

All Wheel Drive 49
System integration 50
AWD control unit 50
AWD solenoid valve 50
Oil pump 50

Suspension 51
Front suspension 52
Rear suspension 53
Alignment angles 54

Tire Pressure Monitoring System 55
System operation 55
TPMS reset 55
Sensor ID registration 56
Auto-learn 56
Service points 56

Tires 57
Puncture repair 57
Winter tires 57
Snow chains 57

Wheels 58
Accent wheels 58

Brake System Brake 60

Control System 61
System overview 61
Hill start assist 61
Forward emergency braking 62
Other functionality 63
QX30 New Model Training

Electric Parking brake
- Parking brake actuator: 66
- System operation: 67
- Emergency mode: 67
- Fail safe: 67
- Service points: 67

Steering
- Fail safe: 69
- Workshop mode: 69
- EPS control unit replacement: 69
- Service points: 69

Sonar System and Park Assist
- System types: 70
- Parking sensor settings: 71
- Sonar ranges: 72
- Park assist: 73
- System diagnosis: 73
- Sonar control unit replacement: 73

Automatic Speed Control

Intelligent Cruise Control
- Long range radar alignment: 75

Driver Assistance Systems
- Components: 76
- Lane departure warning: 78
- Blind spot warning: 78
- Front camera adjustment: 79
- Rearview camera: 80

Restraints
- Air bag module: 82
- Air bag control unit replacement: 82
- Crash/impact sensors: 82
- Pyrofuse: 83
- Fr. passenger seat occupancy detection: 84
- Seat belts: 85
- Air bags: 86
- Emergency call: 86

HVAC
- Refrigerant circuit: 87
- Control panel: 89
- Air conditioning filter: 90
- Air quality sensor: 90
- Outside air temperature: 91
- Interior temperature sensor: 91
- Sunload sensor: 92
- Eco stop start function: 92
- Auto air recirculation mode: 92
- Diagnosis: 92
QX30 New Model Training

Driver Controls
- Steering wheel combination switch 94
- Central switch panel 95
- Rotary lighting switch 95

Instrument Panel
- General layout 96
- Speedometer types 96
- Warning and information symbols 97
- Service point 97

Vehicle Information Display
- General layout 98

Door Control
- Door modules 100
- Door switches 101

Lighting
- Halogen headlamp system 102
- LED headlamp system 103
- Headlamp control unit 104
- LED headlamp control module 104
- Auto lights 105
- Lighting circuits 105
- Active adaptive front lighting system 107
- High beam assist system 107
- Bulb replacement 108

Wipers
- Front wipers 109
- Rear wiper 110
- Spray nozzle hose heater 111
- Wiper blade replacement 111

Seats
- Seat position and memory 113
- Seat control modules 114
- Seat heaters 114

Security
- Component locations 115
- Door locks 116
- Fuel lid assembly 118
- Emergency fuel lid lock release 119
- Emergency tailgate release 119
- Door lock key control 120
- Emergency mechanical key 120
- Key battery replacement 120
- Central locking system 121
- Intelligent key system 123
- Immobilizer 124
- Vehicle alarm 124

Glass and Windows
- Windshield glass 125
- Interior mirror 125
- Door mirrors 126
- Power windows 127
- Heated rear glass 129
- Heated washer system 129
QX30 New Model Training

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint</td>
<td>130</td>
</tr>
<tr>
<td>Body</td>
<td>130</td>
</tr>
<tr>
<td>Noise, vibration and harshness (NVH)</td>
<td>131</td>
</tr>
<tr>
<td>Styling</td>
<td>132</td>
</tr>
<tr>
<td>Emblem</td>
<td>133</td>
</tr>
<tr>
<td>Rear spoiler</td>
<td>133</td>
</tr>
<tr>
<td>Kicking plate</td>
<td>134</td>
</tr>
<tr>
<td>Back door</td>
<td>134</td>
</tr>
<tr>
<td>Audio Visual and Navigation</td>
<td>135</td>
</tr>
<tr>
<td>InTouch</td>
<td>135</td>
</tr>
<tr>
<td>Display control unit</td>
<td>136</td>
</tr>
<tr>
<td>NAVI control unit</td>
<td>137</td>
</tr>
<tr>
<td>AV control unit</td>
<td>137</td>
</tr>
<tr>
<td>External data input box (SD Card)</td>
<td>138</td>
</tr>
<tr>
<td>External data input box (USB)</td>
<td>138</td>
</tr>
<tr>
<td>Active noise control unit</td>
<td>138</td>
</tr>
<tr>
<td>Active noise cancellation</td>
<td>139</td>
</tr>
<tr>
<td>Active sound enhancement</td>
<td>139</td>
</tr>
<tr>
<td>On-board diagnosis</td>
<td>140</td>
</tr>
<tr>
<td>Around view monitor</td>
<td>142</td>
</tr>
<tr>
<td>Navigation system</td>
<td>142</td>
</tr>
</tbody>
</table>
QX30 New Model Training

Introduction

Infiniti revealed its QX30 active compact during its press conference at the 2015 Frankfurt Motor Show. Representing Infiniti’s first entry into the fast-growing premium compact segment, the QX30 will play an important role in helping the company realize its plans for global growth.

The QX30 challenges convention with its bold character and daring shape and stays true to the signature design cues from the original 2013 concept. QX30 offers exceptional ride and handling thanks to the versatile dimensions, confident dynamics and intuitive technologies.

In November 2015 the QX30 AWD premium active crossover made its simultaneous global debut at the 2015 Los Angeles and Guangzhou international motor shows. QX30 AWD offers an elevated ride height, confidence-inspiring handling, a ‘go-anywhere’ attitude and comes available with an intelligent all-wheel drive system.
General Information

Vehicle Dimensions

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Front Overhang</th>
<th>Wheelbase</th>
<th>Rear Overhang</th>
<th>Ground Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>QX30 Base/Premium</td>
<td>174.21</td>
<td>82.01</td>
<td>59.45</td>
<td>35.98</td>
<td>106.3</td>
<td>32.01</td>
<td>6.77</td>
</tr>
<tr>
<td>QX30 Sport</td>
<td>174.21</td>
<td>82.01</td>
<td>58.03</td>
<td>35.98</td>
<td>106.3</td>
<td>32.01</td>
<td>6.10</td>
</tr>
<tr>
<td>QX30 AWD</td>
<td>174.21</td>
<td>82.01</td>
<td>60.24</td>
<td>35.98</td>
<td>106.3</td>
<td>32.01</td>
<td>7.95</td>
</tr>
</tbody>
</table>

All dimensions expressed in inches.
Model Variation

FWD MODELS

<table>
<thead>
<tr>
<th>Destination</th>
<th>Body</th>
<th>Engine</th>
<th>Axle</th>
<th>Handle</th>
<th>Transmission</th>
<th>Grade</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>4 door</td>
<td>2.0L turbo engine</td>
<td>2WD</td>
<td>LHD</td>
<td>7DCT</td>
<td>Base</td>
<td>DEBALPL-UUA</td>
</tr>
<tr>
<td></td>
<td>hatchback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leather</td>
<td>DEBALQL-UUA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Premium</td>
<td>DEBALRL-UUA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sport</td>
<td>DEBALTL-UUA</td>
</tr>
<tr>
<td>Canada</td>
<td>Base</td>
<td>1.6L turbo engine</td>
<td></td>
<td></td>
<td></td>
<td>DEBNLXL-UJA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leather</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DEBNLYL-UJA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Premium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DEBNLXL-UNA</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>Sport</td>
<td>2.0L turbo engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DEBALTL-UJA</td>
</tr>
</tbody>
</table>

AWD MODELS

<table>
<thead>
<tr>
<th>Destination</th>
<th>Body</th>
<th>Engine</th>
<th>Axle</th>
<th>Handle</th>
<th>Transmission</th>
<th>Grade</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>4 door</td>
<td>2.0L turbo engine</td>
<td>AWD</td>
<td>LHD</td>
<td>7DCT</td>
<td>Base</td>
<td>DEBNLXL-UUA</td>
</tr>
<tr>
<td></td>
<td>hatchback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Premium</td>
<td>DEBNLYL-UUA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Base</td>
<td>DEBNLXL-UNA</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Premium</td>
<td>DEBNLYL-UNA</td>
</tr>
</tbody>
</table>

VEHICLE IDENTIFICATION NUMBER ARRANGEMENT

![VIM Diagram](image-url)
QX30 New Model Training

SIS Code (Infiniti Model Variation Code)

VIN Locations

Access Points

Engine Codes

1.6L and 2.0L Turbo

Data Stickers

Hood Release and Data Link Connector

Fuel Door Release
Jacking Points

Fuel Requirements
Unleaded premium fuel (minimum 91 AKI/95 RON). Unleaded regular fuel (minimum 89 AKI/91 RON) can be used temporarily with the following limitations:

- Have the fuel tank filled only partially with unleaded regular, and fill up with unleaded premium as soon as possible.
- Avoid full throttle driving and abrupt acceleration.

Use unleaded premium for maximum vehicle performance.

Battery Charging
Current draw with the ignition on can reach in excess of 35 amps, and a conventional battery charger may not be sufficient to handle the energy requirements. When working on the vehicle with the ignition on/engine, off it is recommended that a battery charger capable of supplying up to 50 amps of current should be connected to the main vehicle battery.
Main and Auxiliary Battery Replacement

QX30 uses VRLA (valve-regulated lead-acid) batteries with AGM (absorbed glass mat) technology in support of the stop/start function. Do not use any other type of battery, as this may cause early deterioration of the battery or a malfunction of the stop/start system.

Jump Start Procedure

In the unlikely event of excessive battery discharge or failure, connect the jump start cables in the sequence shown. Disconnect in reverse order when safe to do so.

Towing

Towing methods are as follows:

Front Wheel Drive

All-wheel Drive
Service Reminder

Reset the service reminder using the following methods.

With CONSULT-III plus:

1. Open METER/M&A and select Active Test.
2. Select Confirmation of General Maintenance if you wish to see the remaining time between services.
3. Select Reset General Maintenance once a service has been completed on the vehicle.

Without CONSULT-III plus (for PDI only):

1. Ensure the ignition key is set to the accessory position 1 and trip information is displayed on the instrument panel vehicle information display.
2. Press and hold the steering wheel RH phone button followed by the LH OK button simultaneously for five seconds until the service and self diagnosis hidden screen appears.
3. Scroll through the sub menu options and select Maintenance to obtain service related data and reset the service interval.

NOTE: If the odometer reads below 155 miles the service reminder can be set in the information display as at PDI. CONSULT must be used to reset service reminder at odometer readings above 155 miles.

When resetting the service interval via the vehicle information display, you must select the correct oil type for the engine fitted to the vehicle.

Engine oil code for 2.0L: 229.5
Service and Maintenance

Abbreviations:
- I = Inspect and correct or replace as necessary
- R = Replace

<table>
<thead>
<tr>
<th>MAINTENANCE OPERATION</th>
<th>MAINTENANCE INTERVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform at number of miles, kilometers or months, whichever comes first.</td>
<td>miles x 1,000 5 10 15 20 25 30 35 40 45 50 55 60 (km x 1,000) (8) (16) (24) (32) (40) (48) (56) (64) (72) (80) (88) (96) months 6 12 18 24 30 36 42 48 54 60 66 72</td>
</tr>
<tr>
<td>Engine compartment</td>
<td>See NOTE (1)</td>
</tr>
<tr>
<td>V-belt</td>
<td>See NOTE (2)</td>
</tr>
<tr>
<td>Air cleaner filter</td>
<td>Replace every 155,000 miles or 180 months</td>
</tr>
<tr>
<td>Fuel lines</td>
<td>Replace every 45,000 miles or 48 months</td>
</tr>
<tr>
<td>Fuel filter</td>
<td>See NOTE (3)</td>
</tr>
<tr>
<td>Engine coolant*</td>
<td>Replace every 155,000 miles or 180 months</td>
</tr>
<tr>
<td>Engine oil</td>
<td>R R R R</td>
</tr>
<tr>
<td>Engine oil filter</td>
<td>R R R R</td>
</tr>
<tr>
<td>Spark plugs</td>
<td>Replace every 45,000 miles or 48 months</td>
</tr>
<tr>
<td>Brake lines and cables</td>
<td>I I I I</td>
</tr>
<tr>
<td>Brake pads and rotors*</td>
<td>I I I I</td>
</tr>
<tr>
<td>Brake fluid *</td>
<td>R R R R</td>
</tr>
<tr>
<td>Automatic transmission fluid</td>
<td>I I I I</td>
</tr>
<tr>
<td>Automatic transmission fluid and filter</td>
<td>Replace every 60,000 miles or 60 months</td>
</tr>
<tr>
<td>Differential gear oil</td>
<td>I I I I</td>
</tr>
<tr>
<td>Steering gear and linkage, axle and suspension parts*</td>
<td>I I I I</td>
</tr>
<tr>
<td>Tire rotation</td>
<td>See NOTE (1)</td>
</tr>
<tr>
<td>Propeller shaft & drive shaft boots (AWD models)*</td>
<td>I I I I</td>
</tr>
<tr>
<td>Exhaust system*</td>
<td>I I I I</td>
</tr>
<tr>
<td>In-cabin microfilter</td>
<td>R R R R</td>
</tr>
<tr>
<td>I-key battery</td>
<td>R R R R</td>
</tr>
</tbody>
</table>

Please refer to the current QX30 service and maintenance guide for proper maintenance intervals.
Fluid Specifications

The following recommended lubricant, coolant, fluid specification and quantities are an extract from the owners manual. Always consult the latest service manual and service information for the most current data.

The following are approximate capacities. The actual refill quantities may be slightly different. When refilling, follow the procedures instructed in the “8. Maintenance and do-it-yourself” section of the owner’s manual to determine the proper refill capacity.

<table>
<thead>
<tr>
<th>Fluid types</th>
<th>Capacity (Approximate)</th>
<th>Recommended Fluids and Lubricants</th>
</tr>
</thead>
<tbody>
<tr>
<td>US measure</td>
<td>Imp Measure</td>
<td>Liter</td>
</tr>
<tr>
<td>Fuel tank</td>
<td>13.2 gal (AWD: 14.8 gal)</td>
<td>11 gal (AWD: 12.3 gal)</td>
</tr>
<tr>
<td>Engine oil (*)</td>
<td>6 qt</td>
<td>5 qt</td>
</tr>
<tr>
<td>Drain and refill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With oil filter change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling system with Reservoir</td>
<td>8.1 qt</td>
<td>6.7 qt</td>
</tr>
<tr>
<td>Automatic Transmission Fluid (ATF)</td>
<td>6.6 qt</td>
<td>5.5 qt</td>
</tr>
<tr>
<td>Brake fluid</td>
<td>Refill to the proper fluid level according to the instructions in the “8. Maintenance and do-it-yourself” section.</td>
<td>– Genuine INFINITI brake fluid or equivalent. DOT 4+ – Never mix different types of fluids.</td>
</tr>
<tr>
<td>Differential gear oil</td>
<td>0.8 qt</td>
<td>0.65 qt</td>
</tr>
<tr>
<td>Multi-purpose grease</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Air conditioner system refrigerant</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Air conditioner system lubricant</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Coolant Draining
The coolant draining port is located to the radiator right side.

The draining procedure is as follows:
1. Remove the retaining clips and bolts on the engine front under cover.
2. Remove the lower fender protector (R/H).
3. Remove the front suspension member attachment.
4. Attach the drain hose to the drain port fitting.

For the long life coolant, always use Genuine Infiniti Engine Coolant or equivalent. The recommended mixture rate is 50%.

Maintenance interval: Every 155,000 miles or 120 months (refer to the appropriate service manual or service and maintenance guide).
Exhaust Pipe Repair
The front and rear of the exhaust pipe can each be repaired by cutting the pipe. Set up the pipe clamp beforehand and use a commercial cutting tool.

When attaching the pipe, match the pipe markings and the edge of the pipe clamp. Refer to the appropriate service manual for details.
Programming and Configuration Processes

When Q50 was launched, the process was introduced of supplying blank ECUs for the engine control module (ECM) and transmission control module (TCM). This practice has been continued with QX30 and also extended to include the airbag control module.

The process of configuring ECUs has also changed with QX30 and applies to over 30 ECUs. Instead of reading data from the previous ECU and then rewriting to the new component, there is no read process. Configuration is carried out using an online process through CONSULT-III plus.

A new process has also been introduced for immobilizer and key coding. All of these processes are supported in the revised CONSULT-III plus operating manual.

The following service points should be noted:

- CONSULT-III version CF-19 or later is required, with software version 53.2 or later.
- Windows 7 operating system
- The vehicle battery must be fully charged with a battery charger attached.
- Ignore the vehicle battery voltage displayed on CONSULT-III plus.
- A strong dealer wireless network (WiFi) connection is required.
- Verify the sub-mode channel setting from the home page of CONSULT-III plus is set to Infiniti.
- Make sure your login details are available, with the correct level of access (only required for certain market areas).
- CONSULT-III plus will prompt when programming or configuration is required.
- Always refer to the CONSULT-III plus operating manual for set up details.
- Switch off sleep modes on CONSULT-III plus, if active.
- Follow instructions precisely.
- The screen might pause during the process; it will continue when ready.
- Make sure the process is not interrupted.
Electric and Power Control

Body Control Module
The body control module (BCM) controls body-related electrical systems and components, including the following:

- Central locking system
- Power window control system
- Headlamp system
- Auto light system
- High beam assist system
- Daytime running light system
- Active adaptive front lighting system
- Turn signal and hazard warning lamp system
- Parking, position, license plate and tail lamp system
- Back-up lamp system
- Stop lamp system
- Front fog lamp system
- Headlamp aiming control system
- Interior room lamp control system
- Interior room lamp battery saver
- Illumination control unit
- Front wiper and washer system
- Rear wiper and washer system
- Spray nozzle hose heater system
- Energy management system
Electronic Ignition Switch

The electronic ignition switch (EIS) is central to the operation of the vehicle and without it the vehicle is completely disabled. Main responsibilities include:

- Vehicle immobilization
- Gateway to the vehicle’s CAN architecture
- Supply of ignition and battery voltage

The diagram below shows EIS position supply voltages.

<table>
<thead>
<tr>
<th>DIN code</th>
<th>Key Out</th>
<th>Key Position 0 (inserted)</th>
<th>Key Position 1 (accessory)</th>
<th>Key Position 2 (ignition)</th>
<th>Key Position 3 (cranking)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Batteries and Alternator

The on-board electrical system battery is located at the left rear of the engine compartment when viewed in the direction of travel. An additional stop/start battery is installed in the front passenger footwell. The additional battery has a capacity of 12 Ah and prevents a voltage dip when the engine is started during the idle stop/start function.

<table>
<thead>
<tr>
<th>Engine</th>
<th>On-board Electrical System Battery</th>
<th>Alternator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6L & 2.0L Engines</td>
<td>70 Ah</td>
<td>150 A</td>
</tr>
</tbody>
</table>
Energy Management System
The energy management system manages the provision (supply) and consumption (usage) of electrical energy to ensure mobility and a stable electrical consumer supply. Functions are as follows:

- Engine ON energy management
- Engine OFF energy management
- Start/stop energy management
Engine ON Energy Management
The engine ON energy management function ensures the stability of the on-board electrical system as well as an even charge balance in the battery. Because the power output of the alternator is dependent on engine speed and temperature, plus the fact that many consumers are in use simultaneously, overload situations can arise that need to be buffered by the battery.

When such an overload situation lasts for an extended period or when the charging capacity of the battery is low, a negative charge/discharge ratio may result that could impair the engine’s starting capability.

In situations where the on-board electrical system is overloaded for prolonged periods, engine ON energy management works to increase the power output of the alternator and also reduces the consumers in order to balance the charge/discharge ratio of the battery.

Engine OFF Energy Management
The engine OFF energy management function safeguards the stability of the on-board electrical system when the vehicle is at idle stop. The functionality is integrated in the BCM and serves to preserve the available voltage/amperage of the main battery.

The vehicle is deemed to be electrically dormant 75 minutes after ignition OFF. At 90 minutes, the BCM requests a battery voltage/current/temperature reading from the battery sensor and continues to do so every 15 minutes thereafter.

If a current draw significantly over 50 milliamps is detected, any remaining consumers may be switched off by the BCM activating the (battery switched) 30g relay.

The 30g relay is switched off six hours after ignition OFF. Door handle capacitors stay charged for a minimum of 72 hours.
Stop/Start Energy Management

The ECM continuously assesses the stop/start system conditions. When the requirements are fulfilled, the idle stop/start function is enabled. When the vehicle comes to rest, the ECM evaluates all relevant data, transmits a stop enable signal, and stops the engine. The ECM also communicates an engine OFF signal to the BCM via CAN to prevent the initiation of the energy OFF management function. The driver is notified the function is active at engine shut off by the stop/start symbol in the combination meter.
When an engine speed of 400 to 700 rpm is detected, the ECM terminates the start procedure and transmits the engine running signal to BCM via CAN. The BCM re-energizes the decoupling relay and de-energizes the sub-battery relay. The decoupling relay reconnects the main battery to the on-board electrical system.

The energy requirement of the on-board electrical system is now supplied again by the main battery.

Stop/Start Cycle
The main battery supplies the on-board electrical system while the engine is at rest in a stop/start cycle. When the engine is restarted, the decoupling relay is temporarily de-energized isolating the main battery from the on-board electrical system for the duration of the starting process.

At this point the sub-battery relay is also energized and the energy requirement of the on-board electrical system is solely covered by the sub-battery. The main battery is then used solely to supply the energy required for the engine starting process.
Network Architecture

Network Overview
The ever-increasing demands on the on-board electronic systems in the fields of vehicle safety, comfort, communications, and diagnosis require wider and wider networking of vehicle systems to allow the necessary information to be exchanged.

On QX30, many different networks are in use, making this the most complex Infiniti vehicle to date. The use of various network speeds combined with different manufacturer CAN and LIN types has necessitated the use of an increased number of gateway control units. This ensures an unrestricted flow of information.

The following data bus systems and speeds are used on QX30:

<table>
<thead>
<tr>
<th>System</th>
<th>Transfer rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body CAN 1</td>
<td>125 kb/s</td>
</tr>
<tr>
<td>Body CAN 2</td>
<td>125 kb/s</td>
</tr>
<tr>
<td>Multimedia CAN</td>
<td>125 kb/s</td>
</tr>
<tr>
<td>Diagnostic CAN</td>
<td>500 kb/s</td>
</tr>
<tr>
<td>Powertrain CAN</td>
<td>500 kb/s</td>
</tr>
<tr>
<td>Front End CAN</td>
<td>500 kb/s</td>
</tr>
<tr>
<td>Chassis CAN</td>
<td>500 kb/s</td>
</tr>
<tr>
<td>LIN</td>
<td>22 KB/s</td>
</tr>
</tbody>
</table>

Topology
The diagram and module list on the following page show engineering development information for QX30. The terminology and structure will differ slightly from the final information found on the vehicle and in the service manual, but will give an overview of the structure and complexity of QX30 network architecture. NOTE: THIS DEPICTION COVERS ALL POSSIBLE NETWORKS USED FOR QX30 GLOBALLY.
Note: Graphic displays all possible BUS configurations available. Some systems may not be available for your market area.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALA</td>
<td>Adaptive Light Actuator</td>
</tr>
<tr>
<td>AM</td>
<td>Antenna Module</td>
</tr>
<tr>
<td>ANC/ASC</td>
<td>Sound Control Module</td>
</tr>
<tr>
<td>APSS</td>
<td>Active Pedestrian Safety System</td>
</tr>
<tr>
<td>AQS</td>
<td>Air Quality Sensor</td>
</tr>
<tr>
<td>ASBM U</td>
<td>Upper Accessory Switchbank Module</td>
</tr>
<tr>
<td>AVM</td>
<td>Around View Monitor</td>
</tr>
<tr>
<td>AWD</td>
<td>All-wheel Drive</td>
</tr>
<tr>
<td>BCM</td>
<td>Body Control Module</td>
</tr>
<tr>
<td>BR</td>
<td>Blower Regulator</td>
</tr>
<tr>
<td>CEPC</td>
<td>Central Powertrain Regulator</td>
</tr>
<tr>
<td>CLA</td>
<td>Curve Light Actuator</td>
</tr>
<tr>
<td>CPC</td>
<td>Common Powertrain Controller</td>
</tr>
<tr>
<td>DCT</td>
<td>Dual Clutch Transmission</td>
</tr>
<tr>
<td>DMFL</td>
<td>Door Module Front Left</td>
</tr>
<tr>
<td>DMFR</td>
<td>Door Module Front Right</td>
</tr>
<tr>
<td>DSI</td>
<td>Direct Select Interface</td>
</tr>
<tr>
<td>DSM MS</td>
<td>Door Switch Module/Memory Seat</td>
</tr>
<tr>
<td>DSM WM</td>
<td>Door Switch Module Windows/Mirror</td>
</tr>
<tr>
<td>EC</td>
<td>EC Mirror</td>
</tr>
<tr>
<td>ECM</td>
<td>Engine Control Module</td>
</tr>
<tr>
<td>EIS</td>
<td>Electronic Ignition Switch</td>
</tr>
<tr>
<td>EPKB</td>
<td>Electronic Parking Brake</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS</td>
<td>Electric Power Steering</td>
</tr>
<tr>
<td>ESL (ELV)</td>
<td>Electric Steering Lock</td>
</tr>
<tr>
<td>ESP</td>
<td>Electronic Stability Control</td>
</tr>
<tr>
<td>FCW</td>
<td>Forward Collision Warning</td>
</tr>
<tr>
<td>FSCM</td>
<td>Fuel System Control Module</td>
</tr>
<tr>
<td>FSM</td>
<td>Flap Stepper Motors</td>
</tr>
<tr>
<td>GDO</td>
<td>Universal Garage Motor</td>
</tr>
<tr>
<td>GEN</td>
<td>Generator 150A</td>
</tr>
<tr>
<td>GPA</td>
<td>Glow Plug Activator</td>
</tr>
<tr>
<td>HLI_FL</td>
<td>Headlamp Interface Unit Left</td>
</tr>
<tr>
<td>HLI_FR</td>
<td>Headlamp Interface Unit Right</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilation, and Air Conditioning</td>
</tr>
<tr>
<td>IBS</td>
<td>Intelligent Battery Sensor</td>
</tr>
<tr>
<td>IBSM_R1</td>
<td>Blind Spot Monitoring Meter</td>
</tr>
<tr>
<td>IBSM_R4</td>
<td>Blind Spot Monitoring Slave</td>
</tr>
<tr>
<td>IC</td>
<td>Instrument Cluster</td>
</tr>
<tr>
<td>IT_M</td>
<td>Display Control Unit (IT Master Gen5)</td>
</tr>
<tr>
<td>K-GO</td>
<td>Keyless-go</td>
</tr>
<tr>
<td>LCU_FL/FR</td>
<td>LED Control Unit Front</td>
</tr>
<tr>
<td>LRR</td>
<td>Long Range Radar</td>
</tr>
<tr>
<td>LSM/LRSM</td>
<td>Light/Rain Sensor Module</td>
</tr>
<tr>
<td>MPC</td>
<td>Multipurpose Camera</td>
</tr>
<tr>
<td>NAVI</td>
<td>Navigation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX_LT</td>
<td>NOX Sensor Left</td>
</tr>
<tr>
<td>NOX_RT</td>
<td>NOX Sensor Right</td>
</tr>
<tr>
<td>OCM</td>
<td>Occupant Classification Module</td>
</tr>
<tr>
<td>OHCM</td>
<td>Overhead Control Module</td>
</tr>
<tr>
<td>ORC</td>
<td>Occupant Restraint Controller</td>
</tr>
<tr>
<td>PSMD</td>
<td>Power Seat Module Driver</td>
</tr>
<tr>
<td>PSMP</td>
<td>Power Seat Module Passenger</td>
</tr>
<tr>
<td>PTC-D</td>
<td>PTC (Diesel Engine only)</td>
</tr>
<tr>
<td>PTS/APD</td>
<td>Sonar System/Park Assist Control</td>
</tr>
<tr>
<td>RVC</td>
<td>Rear Camera</td>
</tr>
<tr>
<td>SCCM</td>
<td>Steering Column Control Module</td>
</tr>
<tr>
<td>SEAT D</td>
<td>Seat Control Module Driver</td>
</tr>
<tr>
<td>SEAT P</td>
<td>Seat Control Module Passenger</td>
</tr>
<tr>
<td>SIREN</td>
<td>Intrusion Siren</td>
</tr>
<tr>
<td>SSP</td>
<td>Stop/Start pump</td>
</tr>
<tr>
<td>STS</td>
<td>Surface Temperature Sensor</td>
</tr>
<tr>
<td>SWSP</td>
<td>Steering Wheel Switch Pad</td>
</tr>
<tr>
<td>TCU</td>
<td>Telematic Control Unit</td>
</tr>
<tr>
<td>TGW</td>
<td>Telematics Gateway</td>
</tr>
<tr>
<td>TM</td>
<td>Trailer Module</td>
</tr>
<tr>
<td>TPMS</td>
<td>Tire Pressure Monitoring System</td>
</tr>
<tr>
<td>TSSR</td>
<td>Tilt Slide Sunroof Control Module</td>
</tr>
<tr>
<td>VLA</td>
<td>Vertical Levelling Actuator</td>
</tr>
<tr>
<td>VTA SM</td>
<td>Vehicle Theft Alarm Sensor Module</td>
</tr>
</tbody>
</table>
Network Divisions
Due to the large number of networked control units used on QX30, they have been arranged into the following main CAN systems:

* Front End CAN
* Powertrain CAN
* Chassis CAN
* Body CAN
* Multimedia CAN

Gateways
The following control units are classed as gateways:
- Electronic Ignition Switch (EIS)
- CAN gateway
- ECM
- BCM

OBD Connector
The EIS and CAN gateway unit each have their own dedicated diagnostic lines of communication to CONSULT-III plus via the OBD diagnostic connector.

<table>
<thead>
<tr>
<th>Gateway</th>
<th>CAN H</th>
<th>CAN L</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIS</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>CAN Gateway</td>
<td>13</td>
<td>12</td>
</tr>
</tbody>
</table>

Pin information is as follows.
Potential Distribution Electrical Connector (PDEC)
Most CAN networks have a CAN potential distributor electrical connector that acts as a centralized signal node point. The diagram below is the layout of node points for a LHD vehicle.

1. Body CAN
2. Diagnostic CAN
3. Powertrain CAN
4. Chassis CAN

Each potential distributor has a slot for every control unit’s CAN-H and CAN-L terminals. Two 30 ohm resistors are fitted in series to act as the signal buffer and replaces the more conventional use of 2 x 120 ohm resistors fitted in parallel (Multi-media (M-CAN) still uses 2 x 120 ohm resistors at termination points located in the CAN gateway).

![CAN Potential Distributor Electrical Connector (Body)](image)

<table>
<thead>
<tr>
<th>CAN Potential Distributor Electrical Connector</th>
<th>Number of Slots (Connector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powertrain</td>
<td>6</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>6</td>
</tr>
<tr>
<td>Body</td>
<td>13</td>
</tr>
<tr>
<td>Chassis</td>
<td>13</td>
</tr>
</tbody>
</table>

Resistance Value (normal condition at IGN-off) is as follows.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Resistance (Ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN-H</td>
<td>50-65</td>
</tr>
<tr>
<td>CAN-L</td>
<td></td>
</tr>
</tbody>
</table>
Reference voltage values for CAN potential distributors are shown below. (IGN-ON condition, refer to appropriate service manual for details)

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>2.5-2.7 (2.6-2.9)</td>
</tr>
<tr>
<td>-</td>
<td>2.1-2.3 (2.1-2.4)</td>
</tr>
<tr>
<td>CAN Potential Distributor Electrical Connector</td>
<td></td>
</tr>
<tr>
<td>CAN-H to Ground</td>
<td>0.2-0.4 (0.3-0.6)</td>
</tr>
</tbody>
</table>
1.6L and 2.0L Turbo Engines

Overview
QX30 developed for the North American market is equipped with a 2.0 liter and 1.6 liter transverse version of the 2.0 liter 4-cylinder longitudinal turbo direct injection engine first seen on Q50 in early 2016. The engine mechanical and engine management systems are covered in depth in separate Q50 training. This section limits content to changes specific to its transverse application and also changes that have been made since its introduction in Q50.

Main Construction
- Direct injection with turbocharger
- Valve lifter-less camshaft drive
- Cylinder head cover with camshaft bearing cap
- Intake and exhaust VTC
- Crankshaft balancer (2.0L)

Engine Management
- Engine control module
- Fuel pump control module (FPCM)
- Stop/start compatibility
- Air/fuel ratio & knock sensor regulated fuel mapping

Electrical System
- Part of the powertrain CAN
- Revised connector design

Fuel System (Bosch)
- Single or tandem saddle fuel tank (FWD/AWD)
- Internal fuel tank low-pressure fuel pump
- Camshaft driven high-pressure fuel pump
- Piezo operated injectors

Intake, Exhaust, and Emission Systems
- Throttle valve actuator
- Mechanically controlled turbocharger

Oil and Cooling Systems
- Engine right side water pump
- Engine left side engine oil cooler
- Piston oil jet cooling
- Chain drive engine oil pump
Specifications

<table>
<thead>
<tr>
<th></th>
<th>1.6L Turbo (MEX)</th>
<th>2.0L Turbo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>In-line 4</td>
<td>In-line 4</td>
</tr>
<tr>
<td>Displacement</td>
<td>1595 cc</td>
<td>1991 cc</td>
</tr>
<tr>
<td>Fuel System</td>
<td>50 bar direct injection</td>
<td>50 bar direct injection</td>
</tr>
<tr>
<td>Injector</td>
<td>Piezo</td>
<td>Piezo</td>
</tr>
<tr>
<td>Turbocharger</td>
<td>Vacuum controlled boost regulation</td>
<td>Vacuum controlled boost regulation</td>
</tr>
<tr>
<td>Emission Regulation</td>
<td>OBDII</td>
<td>OBDII</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>154 hp (115 kW)/5300 rpm</td>
<td>208 hp (155 kW)/5500 rpm</td>
</tr>
<tr>
<td>Maximum Torque</td>
<td>185 lb-ft (250 Nm) @1250-4000 rpm</td>
<td>258 lb-ft (350 Nm) @1200-4400 rpm</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>10.3</td>
<td>9.8</td>
</tr>
<tr>
<td>Bore x Stroke</td>
<td>83 mm x 73.7 mm</td>
<td>83 mm x 92 mm</td>
</tr>
<tr>
<td>Drive</td>
<td>FWD</td>
<td>FWD/AWD</td>
</tr>
</tbody>
</table>

Service Point

Before carrying out diagnosis on the fuel system, release the fuel pressure as follows:
1. Remove fuel pump fuse.
2. Start the engine.
3. After engine stalls, crank it two or three times to release remaining fuel pressure.
4. Turn ignition switch OFF.
Component Locations
A large number of engine management and stop/start system components are fitted to both the 2.0L and 1.6L versions of this engine that enable it to meet OBDII emissions regulations. The images below show some of these components, while full details can be found in the service manual.
Crank Pulley
Both a cylinder 1 TDC timing mark and a 79° ATDC mark for high-pressure fuel pump removal are provided. Do strike or drop parts during removal and assembly.

Camshaft Timing
The cylinder head camshaft positions are reversed on the transverse version of this engine to improve turbo cooling. The method of camshaft timing however remains the same as the 2.0t engine used in the Q50.

<table>
<thead>
<tr>
<th></th>
<th>Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>RHS</td>
<td>LHS</td>
</tr>
<tr>
<td>Transverse</td>
<td>LHS</td>
<td>RHS</td>
</tr>
</tbody>
</table>

Engine Timing Mark (Engine Side)

Engine Timing Mark (Crank Pulley Side)

Intake Side

Exhaust Side

79° Mark

79° Mark
Crankshaft Position
The new increment wheel consists of a metal support on which a rubber track filled with ferrite particles is vulcanized in axial or radial form. The signal is required for recording the engine speed and rotational angle in both forward and reverse directions as the engine comes to rest. This enables quicker engine restarting.
The wheel must never come within the vicinity of a magnetic field as this could damage the wheel causing engine performance issues. Cleanliness is also important.
Engine running
• Outside temperature between 14°F (-10°C) and 104°F (40°C)
• Engine hood closed
• Battery temperature between 32°F (0°C) and 140° (60°C)
• Complete system diagnosis no malfunction detected
• Vehicle driven above 5 mph (8 km/h) after engine key start
• Vehicle driven above 10 mph (15 km/h) after engine restart*
• Interior temperature within regulated range

When the function requirements are fulfilled, the engine will shut off automatically when the vehicle is stopped. The driver is notified of the stop/start system operation by the stop/start indicator in the multifunction display of the combination meter.

The stop/start system consists of the following partial functions:
• Function sequence for automatic engine stop
• Function sequence for automatic engine restart
• Function sequence for forced engine restart (a start dictated by the system)
• Function for power supply to on-board electrical system

*QX30 will activate stop/start function up to four times before function is inhibited if vehicle speed does not exceed 10 mph (15kph) such as during stop-and-go traffic. Stop/start function will resume after vehicle has been driven in excess of 10mph (15kph).
Twin Battery Management

Sub Battery Relay
- Controlled by BCM
- Activated during a stop/start engine restart
- Sub battery is switched through to the on-board electrical system

Decoupling Relay
- Controlled by BCM
- Deactivated during a stop/start engine restart
- Isolates the main battery from the sub battery
- Ensures main battery is free to support engine starting
- Reactivated once engine has started

Additional 12V, 12 Ah Sub Battery
- Located under the passenger side of the instrument panel
- Supplies energy to comfort and convenience features
- Ensures no loss in performance during a stop/start engine restart

Current and Temperature Sensor Modules
- Connected to BCM
- Attached to main and sub battery negative terminals
- Monitors battery voltage, current, and temperature
GE7F30A Dual Clutch Transmission

Overview
The dual clutch transmission combines the sporty dynamics of a manual transmission with the convenience of an automatic transmission.

The GE7F30A is a three-shaft manual transmission with two multi-disc clutches contained in a single housing. An internal TCM and electro-hydraulic control valve manages the automatic clutch operation and gear changes. Steering wheel-mounted paddle shifters provide a manual gear selection option.

Heat generated by the constant activation of the multi-disc clutches is handled by an active oil cooling system.

The GE7F30A is suitable for use with the stop/start function. When the stop/start function is active (engine off), an electric auxiliary oil pump supplies the shift elements and actuators of the electro-hydraulic transmission control system with hydraulic pressure.

Gear Ratios
DCT is favored over continuously variable transmission (CVT) as it can handle higher torque applications on QX30 between 258 lb-ft to 331 lb-ft (350 Nm to 450 Nm).

<table>
<thead>
<tr>
<th>Gear</th>
<th>1.6L</th>
<th>2.0L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>3.8571</td>
<td>3.8571</td>
</tr>
<tr>
<td>2nd</td>
<td>2.4286</td>
<td>2.4286</td>
</tr>
<tr>
<td>3rd</td>
<td>2.9048</td>
<td>2.6667</td>
</tr>
<tr>
<td>4th</td>
<td>1.1892</td>
<td>1.0488</td>
</tr>
<tr>
<td>5th</td>
<td>0.8723</td>
<td>0.7755</td>
</tr>
<tr>
<td>6th</td>
<td>1.1622</td>
<td>1.0488</td>
</tr>
<tr>
<td>7th</td>
<td>0.9362</td>
<td>0.8367</td>
</tr>
<tr>
<td>Reverse</td>
<td>3.0984</td>
<td>3.3750</td>
</tr>
<tr>
<td>Final</td>
<td>3rd, 6th and 7th</td>
<td>2.654</td>
</tr>
<tr>
<td></td>
<td>1st, 2nd, 4th, 5th and Reverse</td>
<td>4.6</td>
</tr>
</tbody>
</table>
Main Components

1. Differential Pinion
2. Oil Heat Exchanger
3. Dual Clutch
4. Hollow Shaft
5. Internal Shaft
6. Clutch Housing
7. Oil Filter
8. Output Shaft 1
9. Output Shaft 2
10. Transmission Housing
11. TCM Electrical Connector
12. TCM
13. Park Pawl System
14. Oil Pan

Gear Train Operation

The gear train comprises:

- An input shaft containing an internal solid shaft and an outer hollow shaft.
 - The internal shaft has three fixed gears and a speed sensor rotor.
 - The hollow shaft has two fixed gears and a speed sensor rotor.
- Two output shafts containing the idler gears, synchronizers and one fixed gear each.
- A park pawl gear fitted to output shaft 1.
- A differential pinion with spur gear.

Power flow takes place via the corresponding internal or hollow shaft fixed gear to the associated output shaft idler gears, depending on which clutch is engaged.

Note that all gears are splined together with the respective shafts without the synchronizer engaged are designated fixed gears.

Gears 1-7 and Reverse gear are idler gears that can be braked by synchronization devices and positively connected to the respective output shaft.
QX30 New Model Training

Gear Train Construction

1. Internal Shaft
2. Hollow Shaft
3. Output Shaft 1
4. Output Shaft 2
5. 7th Gear Idler
6. 3rd Gear Idler
7. Reverse Gear Idler
8. 6th Gear Idler
9. Output Shaft Fixed Gear 2
10. Internal Shaft Fixed 5th/7th Gear
11. Internal Shaft Fixed 3rd Gear
12. Internal Shaft 1st Fixed Gear
13. Hollow Shaft Fixed 2nd/Reverse Gear
14. Hollow Shaft Fixed 4th/6th Gear
15. 5th Gear Idler
16. 1st Gear Idler
17. 2nd Gear Idler
18. 4th Gear Idler
19. Output Shaft Fixed Gear 1
20. Spur Gear (Differential Pinion)
21. Shift Fork
22. Sliding Sleeve
23. Shift Rod
24. Park Pawl Gear
25. Sensor Rotor
26. Gear Actuator Cylinder
A. Tapered Roller Bearings
With the ignition ON in Neutral, both clutches are open. The drive shafts are at a standstill and no force is transmitted into the transmission. However both Gear 1 and Reverse are pre-selected in anticipation of driver requirements. Torque transfer takes place as follows on an alternating basis between the outer multi-disc clutch (K1) and the inner multi-disc clutch (K2) of the dual clutch module.

<table>
<thead>
<tr>
<th>Clutch Open</th>
<th>Clutch Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>No torque transmission</td>
<td>Torque transmission</td>
</tr>
</tbody>
</table>

As the engine, transmission, and road speeds/loads increase, so does the transmission oil clamping force required to stop the multi-disc clutch plates from slipping.

The internal shaft and hollow shaft speed sensors ensure the appropriate transmission oil pressure is applied to clutches K1 and K2 in all operating conditions.
PowerFlow

Engine torque output is transferred to the DCT via the crankshaft drive plate. Depending on clutch K1 or K2 engagement, the DCT internal shaft or hollow shaft transmits the torque to the driven road wheels via output shafts 1 and 2 to the pinion differential.

The TCM controls gear selection via the hydraulically-operated internal shift mechanism, providing uninterrupted torque transfer shift operations. The power flow of the gears is shown in the following illustrations.
QX30 New Model Training

2nd Gear

K2

Multiple Cone Synchronization

4th Gear

K2

Dual Cone Synchronization

3rd Gear

K1

Multiple Cone Synchronization

5th Gear

K1

Dual Cone Synchronization
Reverse Gear Operation
Reverse gear is not driven by a fixed gear on one of the drive shafts, but rather by the gear wheel for 2nd gear on the opposite output shaft. This results in the following power flow:
The driving power is transmitted from the hollow shaft via the fixed gear to the gear wheel of 2nd gear. Gear wheel 2 transmits the power to the reverse gear, since it is always meshed with this. The reverse gear is permanently connected to the synchronizer body of the right gearshift sleeve so that it is frictionally connected to the adjacent gearwheel for 3rd gear.
Gearwheel 3 transmits the power via the two fixed gears on drive shaft one to the gearwheel of first gear. Via the right gearshift sleeve, gearwheel 1 is frictionally connected to output shaft 1. The driving power is transmitted via the fixed gear of output shaft 1 to the differential, which now turns in the opposite direction as the other gears. The gear ratio here is similar to 1st gear.
Control Valve Assembly
The control valve assembly includes an electro-hydraulic valve block, the TCM, and auxiliary oil pump. The valve body contains the components involved in gearshift, lubrication, and control processes, and the internal sensor system includes RPM, temperature, pressure, and position sensors. The TCM evaluates internal and incoming signals/requests from other control units via CAN to perform the following:
- Shift and control solenoid valves
- Electric auxiliary oil pump
- Hydraulic park pawl actuation
- Electric park pawl release
The integrated electric auxiliary oil pump works in conjunction with a mechanical oil pump.

Shift Selector
Like an automatic transmission, park, neutral, drive and reverse can be engaged. Three modes are also available.
- Manual shifting using the steering wheel paddles
- Economy mode
- Sport mode
Selection information is displayed in the central area of the combination meter.

A. Electrical Connector
1. Clutch Temperature Sensor
2. Hollow Shaft RPM Sensor
3. Engine Speed Sensor
4. Internal Shaft RPM Sensor

1. Vehicle Information Display
2. Parking Brake Indicator Lamp
3. Parking Brake Warning Lamp
4. Engine Diagnosis Indicator Lamp
5. Transmission Mode Display
6. Gear Indicator
7. Instrument Cluster
Gear Shift
To engage a gear, pressure must be increased or relieved in the respective gear positioning cylinder so the sliding sleeve of the synchronization system is moved by the shift fork. The shift fork moves the sliding sleeve in the axial direction and thus synchronizes the speed between idler gear and output shaft so the gear can be shifted. Permanent magnets are embedded in the shift forks. Sensors are mounted in the control valve to indicate to the transmission control unit the position of the shift fork.

Oil Supply
DCT oil supply and lubrication occurs through two transmission oil pumps that deliver independently of one another, together with a degree of splash lubrication of the gears. The primary pump (1) ensures an oil supply whenever the engine is running and is driven directly off the dual clutch via a pair of gears.

The regulated pump pressure is between 50 and 320 PSI (350 to 2200 kPa) depending on engine speed. The electric transmission oil pump, located centrally on the control valve assembly, supports the primary pump under the following operating conditions:
• At low rotational speeds
• In start/stop mode
• High automatic transmission fluid temperature to assist in clutch cooling
Transmission Cooling
Due to ever frequent shift and clutch operations which can involve hill starts and high loads, the transmission oil requires temperature management to avoid malfunctions due to insufficient cooling. The DCT oil heat exchanger is located on the transmission housing and forms the interface between the engine coolant circuit and automatic transmission fluid circuit. The transmission oil temperature is recorded by the TCM from the clutch temperature sensor and transmitted to the engine control module (ECM) via drivetrain CAN. The flow of coolant is controlled by the DCT cooling circulation pump from the engine control unit as required. The automatic transmission fluid returns to the transmission housing via a return duct.

Park Pawl
A parking pawl locking system is fitted to prevent the vehicle from rolling away when parked, and is selected via the shift selector (P) position. The electric transmission oil pump supplies the oil pressure to apply and release the park pawl. CONSULT can be used to disengage the park pawl if the electrical system is in working order.

NOTE: Should the electrical system fail, there is no emergency park pawl release mechanism beneath the shift selector.
Diagnosis and Repair

The DCT can be divided into three distinct areas, and most problems associated with DCT are attributable to electrical aspects of operation.

- The clutch housing with dual clutch module (cannot be disassembled).
- The mechanical gear train, differential, and park pawl
- The electrical TCM and control valve assembly (can be diagnosed and replaced as separate units).

Many parameters are available in Data Monitor, including:

- Clutch application and slip (internal speed sensors)
- Gear selection solenoid actuation
- Internal oil pressure and electric pump activation
- Cooling management

There is no requirement for adapting the multi-disc clutch touch points. This is done automatically.

If the electrical pump fails, no gears can be selected. If clutches slip, suspect the mechanical oil pump.

With the ignition ON and engine OFF, if you can shift from N to P the electric pump is working.

The DCT cannot be separated from the engine without removing both from the vehicle.

If a DCT is transferred to another vehicle, a new TCM is required due to its immobilizer status.

A service part control valve assembly can be installed, adapted to vehicle, and road tested for diagnostic purposes prior to marrying to the vehicle. After 40 ignition cycles, the valve assembly will marry itself to the vehicle and cannot be used on other vehicles.

Maintenance

Contamination is the greatest threat to DCT longevity. When carrying out service and maintenance work, cleanliness is extremely important.

There are two oil filters - an external pressure oil filter and a suction oil filter located in the oil sump.

Oil change interval is 60,000 mi/5 years and includes both pressure and suction oil filter replacement.

Oil level check is only possible using CONSULT-III plus.

Oil level dipstick J-51940 is also required.

1. Pressure Oil Filter
2. Suction Oil Filter

Contamination is the greatest threat to DCT longevity. When carrying out service and maintenance work, cleanliness is extremely important.
All WheelDrive

The automatically-controlled all wheel drive (AWD) uses a transfer at the dual clutch transmission and a multiple disc clutch integrated in the rear final drive assembly.

On dry road surfaces and with smooth driving style, torque is applied 100% to the front axle but can be distributed to both axles if required. Operation of the multiple disc clutch enables up to 50% of the drive torque to be directed to the rear axle if traction is lost on the front axle.

The propeller shaft turns constantly while driving.

Torque capacity is 550 lb-ft (750 Nm).

An oil pump in the rear final drive generates oil pressure if there is a difference in revolution speeds between the front and rear axles. The AWD control unit regulates the oil pressure using a solenoid valve and thus the drive torque transferred to the rear axle, depending on the driving situation.
System Integration
The AWD system works alongside the Bosch 9 ABS/TCS/ESP system.

AWD Control Unit
The AWD control unit is installed in the rear area on the left hand side of the luggage area. The control unit actuates the AWD solenoid valve to enable activation of the rear axle. The control unit is connected to the powertrain CAN.

Wear data of the rear final drive is stored in the AWD control unit. When the control unit is replaced, this data must first be recorded using CONSULT-III plus and then transferred to the new control unit. If the oil or the entire rear final drive differential is replaced, the wear data must be reset to guarantee optimum operation.

AWD Solenoid Valve
Replacement of the AWD solenoid valve requires resetting learned values using CONSULT-III plus work support.

Service Point
The correct oil is Castrol BOT 355 75W-85 (0.74 L).
Inspect and correct or replace as necessary each 10,000 mi or 12 months.
Suspension
QX30 is equipped with fully independent front and rear suspension systems that provide maximum levels of driving stability and ride comfort. Three ride heights are available, depending on model. QX30 Base and QX30 Premium are fitted with standard suspension, while QX30 Sport has stiffer dampers and stronger springs, lowering the vehicle by 15 mm in comparison with the other models. This results in smaller roll angles during dynamic driving. A third ride height is available on the QX30 AWD. The AWD model is 30 mm higher than QX30 base and premium models.

Drive shafts are mounted to the wheel hubs as shown.
Front Suspension
The MacPherson strut suspension units feature hollow piston rods and aluminum head bearings to reduce weight. Coil spring retention cups are perforated for dirt removal. The dampers are progressive and mechanically switch from soft to harder damping over the first 10 millimetres of travel. The front sway bar is mounted to the vehicle body using low friction vulcanized rubber bushings and is connected to each suspension strut by low friction linkages to improve the response characteristics of the suspension.

Road wheel movement is controlled by a lower forged aluminum transverse link, the suspension strut, and the steering inner and outer socket. The rack and pinion steering is behind the wheel center when viewed in the direction of travel.
Rear Suspension
The four-link rear axle has three transverse control links and one trailing arm to absorb the forces at each rear wheel. This allows the longitudinal and lateral dynamics of the vehicle to be tuned selectively and independently of each other.

The wheel hub and rear lower link are made of aluminium to reduce the unsprung mass. In addition, large rubber bushings are used to optimize ride comfort. Coil spring noise insulation between the body and rear axle is achieved by means of two elastomer shims.

The shock absorber is connected to the body by an aluminium top mount. This has a soft cardan bearing that reduces friction in the shock absorber and improves response characteristics. The rear axle sway bar is attached to the rear axle carrier using low friction vulcanized rubber bushings and is connected to the rear axle with conventional stabilizing rods.

1. Rear Lower Link
2. Rear Suspension Member
3. Trailing Arm
4. Front Upper Link
5. Front Lower Link
6. Top Mount
7. Stabilizing Rod
Alignment Angles
The following angles can be adjusted on QX30:

- Front Toe
- Front Camber
- Rear Toe

Refer to the service manual for alignment specifications and procedures.

Front Toe Adjustment
Center the front wheels and steering prior to adjustment. Loosen the left hand and right hand steering inner socket locking nuts and carry out the adjustment by rotating the inner sockets to adjust the length.

Rear Toe Adjustment
Loosen the left hand or right hand front lower link mounting nut and adjust by rotating the mounting bolt.

Front Camber Adjustment
Loosen the lower strut mounting bolts and adjust accordingly.

Service Point
If a front wheel is unintentionally curbed, it can damage the steering gear inner sockets. This will affect steering geometry and can cause steering pull.
When stationary, the sensors report at a reduced rate. When a speed above 16 mph (25 km/h) is detected, the reporting rate increases. The offset control IC recognizes the position of each sensor by:
- Front to rear (signal delay)
- Side to side (clockwise/counter clockwise wheel rotation and signal delay)

System Operation
Each sensor consists of a pressure sensor, temperature sensor, high frequency (HF) transmitter, and a sensor battery with a service life of approximately ten years. Information sent to the antenna/receiver in the control unit is as follows:
- Internal temperature
- Internal pressure
- Rotational speed (sleep and wake-up signal)
- Direction of rotation (sensor location)
- Sensor ID

TPMS Tire Pressure Benchmark Reset
A new feature has been added to the TPMS system used on the QX30. Tire pressures for the front and rear wheels are stored in the system and used as comparative values. This comparative value is called the "benchmark." Current tire pressures are compared to the benchmark to determine pressure loss. Depending on the severity of pressure loss, various warning messages are displayed in the combination meter. This value should be reset whenever the tire pressures are adjusted. The benchmark pressure can be manually reset using the steering wheel controls and the vehicle information menu: Service > Tire Pressure > Tire Pressure Reset.

To keep the TPMS functioning properly, the reset operation must be performed in the following cases:
- When the tire pressures are adjusted
- When a tire or a wheel is replaced
- When the tires are rotated

TPMS setting resets the tire pressure and temperature benchmarks. Inflation should only be carried out when tires are cold. This system does not have a ‘tire pressure filling support’ feature (EZ-Fill).
Sensor ID Registration
The Infiniti tire pressure sensor activation tool and CONSULT or the Signal Tech II can be used to activate or register new sensors.

Sensor ID registration should be performed under the following circumstances:

- Sensor replacement
- Control unit replacement
- Tire or road wheel replacement
- Performing a tire rotation

ID registration is not required if there is no change in TPMS pressure sensor.

Auto-learn
Should the tool be unavailable, the system initiates an auto-learn procedure every time the vehicle is parked for 19 minutes or more. The auto-learn process is completed once the vehicle is driven above 16 mph (25 km/h), at which point any warning indicators will be extinguished. Within ten minutes of achieving a road speed of 25 mph (40 km/h) or more, the individual tire pressures and temperatures are available for display.

Service Points
There are two sensor part numbers, depending on whether steel or alloy wheels are fitted. Steel wheel sensors have longer valve stems and protrude if fitted to alloy wheels.

To prevent sensor damage when replacing a tire, undo the sensor securing nut and allow the sensor to drop into the old tire before removing from the wheel. Always use a new seal and securing nut when refitting the sensor. Inflating the new tire to the correct pressure will erase any stored DTCs and messages.

NOTE: Unlike other Infiniti vehicles, the QX30 benchmark pressure is not set by the factory. It is important at pre-delivery inspection (PDI) to check and adjust the tire pressures prior to manually resetting the benchmark pressure via the steering wheel vehicle information menu.

<table>
<thead>
<tr>
<th>TPMS Manufacturer</th>
<th>Software Code</th>
<th>Affected Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schrader</td>
<td>SEL-WAL</td>
<td>All QX30 models</td>
</tr>
<tr>
<td>Continental</td>
<td>CONTI-CMF</td>
<td>All other Infiniti models</td>
</tr>
</tbody>
</table>
Tires
Tire options and specification are shown in the table below.

<table>
<thead>
<tr>
<th>Tire size</th>
<th>Pattern</th>
<th>Type</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>235/50R18 97V</td>
<td>Summer</td>
<td>Run Flat</td>
<td>Continental</td>
</tr>
<tr>
<td>235/50R18 97H</td>
<td>All Season</td>
<td>Run Flat</td>
<td>Continental</td>
</tr>
<tr>
<td>235/45R19 95V</td>
<td>Summer</td>
<td></td>
<td>Goodyear</td>
</tr>
</tbody>
</table>

Tires marked ‘MO' or ‘MOE' are specifically designed to complement the suspension and handling characteristics of QX30. Driving distance on a deflated run flat tire should be limited to approximately 50 miles (partially laden) and approximately 18 miles (fully laden) and reduced further according to average road speed, road conditions, and outside temperature. The vehicle speed must not exceed 50 mph.

Puncture Repair
No full size or emergency spare is available on QX30. Always refer to the owner's manual information on maximum recommended speed and distance following a puncture warning with MOE or Run Flat tires.

Snow Chains
Snow chains are not recommended for use on the alloy wheels and tires for QX30.
Wheels
The following wheel sizes, specification, and style are available.

Service Point
While other Infiniti vehicles feature wheel hub studs and tapered wheel nuts, the QX30 uses 5 wheel bolts with conical seats to secure each wheel to its wheel hub.

Wheel bolt tightening torque for all Infiniti QX30 vehicles is 82 - 103 ft-lb (117 - 140 Nm). This is a higher value than other Infiniti models.

The conical wheel bolt seat angle is different from other Infiniti models. Do not install wheels from other Infiniti models and always check the application when installing aftermarket wheels.

Accent Wheels
18- and 19-inch accent wheels incorporate a laser cutting procedure in the paint application. The chosen accent color forms the primer coat to which the base coat is applied. The wheels are then machined to reveal the alloy surface in the normal manner. A final precision laser etching process reveals the accent color where required to a minimum line width of 0.3 mm. The whole wheel is then lacquered to complete the process.
Brake System

The QX30 hydraulic brake system is diagonally split utilizing a master cylinder with a 10” (25.4 cm) servo booster with a braking assistance ratio of 7.5:1. The system incorporates a feature known as 'Rise-up Brakes'. When pressed lightly, the pedal feel and brake performance match the pressure on the pedal. When pushed harder and faster however, the braking force increases exponentially to maximize braking performance. The disc and caliper specifications and options are shown below.

![Graph showing relationship between Pedal Force and Deceleration]

Caliper identification is as follows:

<table>
<thead>
<tr>
<th></th>
<th>Front Disc</th>
<th>Front Caliper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>295 x 28t, Vented</td>
<td>60 mm Piston, Floating</td>
</tr>
<tr>
<td>(1.6L Engines)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>320 x 30t, Vented</td>
<td>60 mm Piston, Floating</td>
</tr>
<tr>
<td>(2.0L Engines)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sport</td>
<td>320 x 30t, Vented, Drilled</td>
<td>60 mm Piston, Floating</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Rear Disc</th>
<th>Rear Caliper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>295 x 1.0, Solid</td>
<td>34 mm Piston, Floating and Electric Parking Brake</td>
</tr>
<tr>
<td>Large</td>
<td>320 x 2.2, Vented</td>
<td>38 mm Piston, Floating and Electric Parking Brake</td>
</tr>
</tbody>
</table>

59
Brake Control System

QX30 is equipped with a Bosch 9 ABS/TCS/ESP system.

The steering wheel angle sensor is integrated into the steering column module. This module also contains the horn contact, air bag clock spring, and combination switch unit, and can only be replaced as a complete unit. The control unit, hydraulic valve block, ABS pump, and yaw sensor are also contained in a single unit. Two versions are available, depending on cruise control fitment and application type.

Bosch 9 ESP-CPI3 (with Intelligent Cruise Control ICC)

- 1 x Master cylinder pressure sensor (driver application)
- 1 x Hydraulic module RH front wheel pressure sensor (system feedback)
- 1 x Hydraulic module LH front wheel pressure sensor (system feedback)
- ICC logic contained in long range radar control unit (LRR)
Bosch 9 ESP-CPI1 (with Normal Cruise Control)

- 1 x Master cylinder pressure sensor (driver application)
- Cruise control logic contained in Bosch 9ESP control unit

System Overview

The Bosch 9 system is capable of the following functions.

- **ABS** - Anti lock braking system controls the brakes so the wheels do not lock during hard braking or when braking on slippery surfaces.
- **EBD** – Electronic brake force distribution limits the rear brake pressure under heavy braking to prevent rear wheel lock up.
- **ESP** – Electronic stability program uses the vehicle brakes and engine output to control vehicle stability and direction. (Also known as VDC).
- **ETS** – Electronic traction control, otherwise known as TCS, limits wheel spin under acceleration and remains active when ESP is switched off.
- **4ETS** – Same as above for AWD vehicles.
- **HSA** – Hill start assist holds the hydraulic brakes on momentarily when pulling away on a gradient.
- **FEB** – Forward emergency braking utilizes a front facing radar to monitor forward car movements and apply braking in an emergency situation.

These functions require no further explanation as they are present on other Infiniti models. A few extra notes are provided on HSA and FEB however.

Hill Start Assist

HSA prevents the vehicle from rolling backwards while driving off up-hill on an inclined surface. Main requirements for activation are:

- Vehicle stationary
- Brake pressure created by the driver

The brake pressure is held for a maximum of one second before it is released. This allows the driver time to transfer from the brake pedal to accelerator to pull away smoothly without fear of vehicle roll-back.
Forward Emergency Braking
The forward emergency braking (FEB) autonomous braking function is standard equipment on all QX30s and requires either the low specification (non ICC) or higher specification (ICC) front radar to help reduce the risk of collision with the vehicle in front. FEB is also referred to as forward collision avoidance (FCA) in some literature.

Non-ICC Radar
![Non-ICC Radar Image]

Autonomous braking function is available in the following speed ranges:
- 4-65 mph (7-105 km/h) for moving objects
- 4-30 mph (7-50 km/h) for stationary objects

The radar sensor requires no adjustment or calibration if removed or replaced.

ICC Radar
![ICC Radar Image]

Autonomous braking function available in the following speed ranges:
- 4-125 mph (7-200 km/h) for moving objects
- 4-30 mph (7-50 km/h) for stationary objects

The radar sensor requires adjustment or calibration if removed or replaced. FEB can be switched off by the driver using the vehicle display sub menu.

A number of technologies work together in emergency braking situations:
- **Forward collision warning function (FCW)** - Visually and audibly warns the driver of a shortening distance.
- **Forward emergency braking function (FEB)** – Full autonomous braking initiated in critical situations if driver fails to brake. (Brake lights flash).
- **Brake assist function (BA)** – If the driver does brake, the system applies additional braking force up to the ABS threshold.

Diagram

1. Steering Wheel-mounted Controls
2. Distance Warning Light
3. Forward Emergency Braking Display

Vehicle Information Display

Instrument Panel

Deceleration

Full Braking

Distance

Radar

1. [Steering Wheel-mounted Controls](#)
2. [Distance Warning Light](#)
3. [Forward Emergency Braking Display](#)
Other Functionality

Included within the operation of the main functions of the Bosch 9 system are a number of supporting sub functions.

<table>
<thead>
<tr>
<th>Main Function</th>
<th>Sub Function</th>
<th>Sub Function Title</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS Anti-lock Braking System</td>
<td>BSC</td>
<td>Brake Slip Control</td>
<td>Controls the slip demand of the front outside wheel when cornering (oversteer interventions only). All other wheels are torque controlled.</td>
</tr>
<tr>
<td></td>
<td>DTC</td>
<td>Drag Torque Control</td>
<td>Sudden throttle closures or downshifting on low friction road surfaces when braking, can cause driven wheels to exert too high an engine drag torque. This leads to an unstable understeer or oversteer situation. DTC reduces the engine braking slip on the driven wheels by slightly increasing the engine torque, helping to maintain vehicle stability and steerability.</td>
</tr>
<tr>
<td>TCS Traction Control System</td>
<td>PTC</td>
<td>Powertrain Torque Control</td>
<td>PTC is the area of TCS that modifies engine torque if too much wheel slip is detected when the driver is accelerating the vehicle.</td>
</tr>
<tr>
<td></td>
<td>BTC</td>
<td>Brake Torque Control</td>
<td>BTC is the area of TCS that uses the ABS hydraulic valve block and pump to alter the torque applied to individual driven wheels when wheel slip occurs.</td>
</tr>
<tr>
<td></td>
<td>BTM</td>
<td>Brake Temperature Model</td>
<td>Calculated brake temperature based on system brake pressure and time. Some Bosch 9 sub system functionality is downgraded or temporarily switched off if the temperature threshold is exceeded.</td>
</tr>
<tr>
<td>ESP Electronic Stability Program</td>
<td>VDC</td>
<td>Vehicle Dynamics Control</td>
<td>VDC is the area of ESP involved in the vehicle’s yaw management by comparing the measured yaw rate with the driver’s wishes. Stability control of excess understeer/oversteer or wheel slip situations is governed through brake pressure modulation which can alter the forces acting on individual wheels, and if performed asymmetrically, can induce a yaw moment about a vehicle’s vertical axis.</td>
</tr>
<tr>
<td></td>
<td>TSM</td>
<td>Trailer Sway Mitigation</td>
<td>ESP intervenes with the use of the ABS hydraulic valve block and pump when unexpected trailer sway is measured around the vehicles vertical axis.</td>
</tr>
<tr>
<td></td>
<td>CBC</td>
<td>Corner Brake Control</td>
<td>When braking in a curve, forces on the rear axle are reduced, leading to less rear wheel grip and a possibility of oversteer. At the same time, a reduction in forces on the curve inside wheels can lead to increased brake slip and an early activation of ABS control. To counteract this yaw moment, the difference in brake forces between the curves inside and outside wheels is increased.</td>
</tr>
<tr>
<td></td>
<td>ROM</td>
<td>Roll-over Mitigation</td>
<td>ROM attempts to avoid a vehicle roll-over situation by actively braking single wheels to limit the lateral acceleration.</td>
</tr>
</tbody>
</table>
ESP Electronic Stability Program (continued)

<table>
<thead>
<tr>
<th>Main Function</th>
<th>Sub Function</th>
<th>Sub Function Title</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST</td>
<td>Dynamic Steering Control</td>
<td>During an oversteer driving situation, DST assists the driver in stabilizing the vehicle. A calculated steering torque offset is sent via CAN to the electronic power steering (EPS) which generates a counter steering angle aimed at assisting the driver in achieving a perfect steering correction. The driver has a decisive role in this process. The stabilizing effect is only reached if the driver follows the applied torque offset and doesn't try to override it.</td>
<td></td>
</tr>
<tr>
<td>DWT-B</td>
<td>Differential Wheel Torque by Brake</td>
<td>During cornering and changes in vehicle direction, DWT-B provides subtle braking interventions to the inner wheels to provide the driver with an impression of enhanced vehicle agility through a direct steering experience. (Similar to Active Understeer Control AUC).</td>
<td></td>
</tr>
<tr>
<td>ESP-OFF</td>
<td>ESP-Off Operation</td>
<td>ESP can only be switched off via the vehicle information display sub menu structure. However the system remains active but with altered thresholds that allow higher body slip angles before intervention.</td>
<td></td>
</tr>
<tr>
<td>ABP</td>
<td>Automatic Brake Prefill</td>
<td>ABP uses the ABS hydraulic unit to remove the air gap between each calipers brake pads and the accompanying rotating brake discs (rotors) thanks to a weak pressure build-up, prior to the driver pressing the brakes pedal. The brake response time and the stopping distance are thus reduced.</td>
<td></td>
</tr>
<tr>
<td>EBP</td>
<td>Electronic Brake Prefill</td>
<td>EBP is an extension of APB and reduces the air gap of the wheel brake by applying the brakes after the driver releases the accelerator pedal suddenly due to an expected emergency brake situation. By actively pre-filling the brake-system, driver braking response time is reduced resulting in a shorter stopping distance.</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td>Dry Braking</td>
<td>DB generates a low brake pressure independent of the driver. The function is active during windshield wiper operation and the pressure build-up takes place within fixed cycles. The purpose is to remove water and dirt from the brake disc.</td>
<td></td>
</tr>
<tr>
<td>BAS</td>
<td>Brake Assist System</td>
<td>In an emergency braking situation, many drivers do not operate the brake pedal strong enough or far enough to reach the maximum possible vehicle deceleration. BAS detects an emergency braking situation by the speed of pressure build-up in the master cylinder and applies additional braking force via the ABS hydraulic unit until the threshold of full ABS activation is reached.</td>
<td></td>
</tr>
<tr>
<td>HBB</td>
<td>Hydraulic Brake Boost</td>
<td>Due to temporarily low vacuum levels or design features, the pneumatic amplification of the hydraulic braking pressure via the vacuum brake booster (servo) may be limited. HBB ensures that the driver’s brake pedal force input is amplified in all operating conditions.</td>
<td></td>
</tr>
<tr>
<td>Main Function</td>
<td>Sub Function</td>
<td>Sub Function Title</td>
<td>Function Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>ESP</td>
<td>HBC</td>
<td>Hydraulic Boost</td>
<td>HBC supplements or replaces the actuation of brake pedal force amplification if the brake failure Compensation vacuum booster (servo) fails.</td>
</tr>
<tr>
<td></td>
<td>CDP</td>
<td>Controlled Deceleration</td>
<td>In an emergency situation, the electronic parking brake can be activated to assist in bringing the of Parking Brake vehicle to rest.</td>
</tr>
<tr>
<td></td>
<td>ABL</td>
<td>Adaptive Brake Light</td>
<td>To warn following traffic that the driver is carrying out emergency braking, the stop lamp is actuated in flashing mode in such situations and the hazard warning flasher system is automatically switched on when stationary.</td>
</tr>
<tr>
<td></td>
<td>CCA</td>
<td>Dynamometer Function</td>
<td>CCA allows rolling road vehicle brake testing and chassis dynamometer work to be performed without intervention of ABS/TCS/ESP.</td>
</tr>
</tbody>
</table>
Electric Parking Brake
The electric parking brake (EPB) system includes two electric parking brake actuators fitted to the rear brake calipers, a parking brake switch located under the rotary lighting switch, and a parking brake control unit fitted in the rear luggage compartment.

Parking Brake Actuator
The following images show the internal workings of the parking brake actuator assembly.

1. Caliper
2. Pads
3. Disc (Rotor)
4. Bracket
5. Piston
6. Spindle Assembly
7. Seal
8. Dust Seal
9. Motor

1. Motor
2. Electrical Connector
3. Drive Belt
4. Epicyclic Gear Train
System Operation
The EPB control unit monitors the rise in electrical current as the rear brake pads clamp the rear rotor discs. Clamping is stopped when the electrical current reaches a set threshold.

- Pushing the parking brake switch applies the parking brake up to a vehicle speed of 2 mph (3 km/h).
- Pulling the parking brake switch releases the parking brake.
- Automatic Release function on accelerator pedal application.

To prevent vehicle movement as the hot brakes cool, the system can reapply the parking brake within 30 minutes of the vehicle being parked. The parking brake is released automatically when in D or R. However, to prevent rolling down hill, if the driver’s door is opened when in D or R, the parking brake is automatically applied and the transmission P range is selected.

Emergency Mode
At speeds above 2.5 mph (4 km/h), if the parking brake switch is pressed and held:

- The ABS reduces excess speed by ABS pump activation to build braking pressure at the calipers.
- At and below 2.5 mph (4 km/h), the parking brake is applied.
- If the switch is released at any point, the parking brake is released.

Fail Safe
If the system fails with the parking brake applied, the piston spindle assemblies must be wound back manually using a 7 mm hex wrench.

Service Points
When performing brake pad replacement, a service position can be activated to fully retract the brake caliper pistons. This also prevents the system from inadvertently reapplying the parking brake while working on the system. The service position can be activated with or without CONSULT-III plus. To manually set the service position, perform the following:

- Set ignition to the accessory position
- Make sure the combination meter displays the mileage screen
- Press and hold the steering wheel phone switch and then press the OK button for five seconds.
- Brake service options are displayed
- Select the correct option and press OK
- Press OK to return to normal operation
Steering

QX30 is equipped with a fully electric, speed sensitive steering system. It enables the Intelligent Parking Assist feature and has integration with many other systems including stop/start.

Compared to a conventional hydraulic power steering system, QX30's electric power steering has the following advantages:

- Improved steering feel and flexibility of control
- Better fuel economy (no steering pump)
- No fluid and associated pipework required (eliminates leaks)
- Compact design
- Speed dependent steering force assistance
- Steering return control
- Side-pull compensation
- Communication and diagnosis through CONSULT-III plus

The steering column is a collapsible type and also features telescopic and tilt convenience.

The steering gear comes as a self-contained unit comprising a rack and pinion assembly, torque sensor, actuator motor, and control unit.

The steering angle sensor is part of the steering column control unit. Speed sensitive steering force assistance is provided by the actuator motor acting directly on the rack and pinion steering gear, depending on the driver input feedback from the torque sensor.

Counter-steering stabilization logic is incorporated in the steering ECU, and complements braking and engine intervention elements of ESP.

Service Point

Curbing the front wheels can damage the steering gear inner sockets. This affects steering geometry and can cause steering pull.

Inner sockets can be changed as shown.
Two steering wheels styles are offered, depending on model.

Steering ratios are fixed and different for QX30 FWD and QX30 AWD as follows:

<table>
<thead>
<tr>
<th></th>
<th>Ratio (mm/rev)</th>
<th>Turns Lock to Lock</th>
<th>Half Stroke (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QX30 Base, Prem.</td>
<td>61.26</td>
<td>2.51</td>
<td>76.8</td>
</tr>
<tr>
<td>QX30 AWD</td>
<td>55.14</td>
<td>2.78</td>
<td>76.8</td>
</tr>
</tbody>
</table>

Fail Safe
If excessive use is detected, power assistance is reduced to prevent overheating, and the steering operation becomes heavier. As the temperature drops, power assistance level returns to normal. Should the system fail electrically, the system reverts to conventional non-assisted mechanical steering. Steering assistance is present when in a stop/start engine cycle (reduced assistance mode).

Workshop Mode
Steering assistance is also available if the vehicle is moved with the ignition on.

EPS Control Unit Replacement
The following must be performed with CONSULT-III plus:
- Steering center position resetting
- Reset of coding
- EPS torque sensor calibration
- Relearning

Service Points
When performing diagnosis, note that any past DTCs stored in the memory may have an effect on system functionality.

Regarding possible vehicle pull issues, after normal checks have been confirmed (tire pressures, brakes not binding, etc.), drive the vehicle for approximately 18 miles (30 km) at speeds around 35 mph (60 km/h). After this, the vehicle has made enough readings to learn the steering angle offset.

Be aware that QX30 base and premium, and QX30 AWD steering rack assemblies look identical and are physically interchangeable. The ECU contains all steering maps and auto configures to the vehicle it is installed into, regardless if the wrong steering rack is installed. However, if this occurs, VDC issues are likely as the ECU will assume either an oversteer or understeer condition, depending the vehicle and rack installed.

The steering rack motor can be replaced as a separate assembly. If either the steering rack, motor, or steering ECU are replaced, the steering torque sensor will require re-learning.
Sonar System and Park Assist
Four, ten, or twelve parking sensors are installed in the front and rear bumpers, depending on the parking sonar system.

System Types
Type A (Rear Sonar Only)
When in reverse, the system visually warns of rear obstacles from approximately 4 feet (1.2 metres), and audibly from 1 foot (30 cm). The intermittent tone stops after three seconds if the obstacle is detected by a corner sensor only, and the distance does not change.

Type B (Front and Rear Sonar)
When in a forward gear, the system visually warns of front obstacles from approximately 3.3 feet (1.0 meter), and audibly from 1 foot (30 cm). When in reverse, the system warns of both front and rear obstacles.

Type C (Park Assist with Front and Rear Sonar)
Same as type B, but with the additional intelligent parking assist feature.
There is one version of the sonar control unit available that requires configuration. It is fitted under and behind the air conditioning controller on the steering wheel side of the transmission tunnel. The parking assist system OFF switch is centrally-mounted. System settings can be adjusted using the Infiniti controller and central screen. The system defaults to ON with each ignition cycle.

1. Red LED (Lamp ON = System OFF)
2. Button Switch

Parking Sensor Settings

The following parking sensor settings can be changed by using the MENU button (B) on the Infiniti controller and selecting Settings (A).

- Parking Sensor Sensitivity
- Parking Sensor Volume
Sonar Ranges
Sonar ranges for both front and rear parking and park assist are shown below. Yellow represents the displayed zones. Red represents the audible zones.

A. Front Monitoring Range from 3.3 feet (1.0 meter)
B. Front Corner Protection
C. Rear Monitoring Range from 4 feet (1.2 meters)
a1. Front Audible Range
c1. Rear Audible Range
D. Parking Space Detection up to 50 feet (15 meters)
E. Rear Corner Protection
Intelligent Parking Assist
Intelligent Parking Assist (IPA) is an ultrasound electronic parking aid that automatically identifies potential parking spaces that are either parallel, or at right angles to the direction of travel and on both sides of the vehicle. All suitable parking spaces are indicated in the upper meter and the vehicle information display. Active steering intervention assists parking and exiting a parking space. The driver remains responsible for road speed and braking operations. IPA is activated automatically when driving forward. The system is operational at speeds of up to approximately 19 mph (30 km/h). While in operation, IPA only detects parking spaces that are:

- Parallel or at right angles to the direction of travel.
- Parallel to the direction of travel and are at least 5 ft. (1.5 m) wide.
- Parallel to the direction of travel and at least 3.2 ft. (1.0 m) longer than your vehicle.
- At right angles to the direction of travel and at least 3.2 ft. (1.0 m) wider than your vehicle.

The parking symbol (2) is displayed, with a left or right arrow, in the upper instrument panel whenever a suitable parking space has been detected, and remains displayed until the vehicle has been driven approximately 50 feet (15 m) away from it. The left (1) or right (3) arrows appear depending on the vehicle side of the parking space. Passenger side parking spaces are displayed by default. Parking spaces on the driver’s side are displayed only when the driver’s side turn signal is activated, and must remain on until the driver confirms IPA use.

The assisted parking function is activated by simply coming to rest and selecting reverse. The ‘Start Park Assist’ message is displayed on the vehicle information display. The driver can select yes/no by pressing the steering wheel ‘OK’ or ‘Back’ button and follow the on-screen prompts.

System Diagnosis
CONSULT-III plus can be used to observe Data Monitor changes in system operation. Work Support allows a technician to check the functionality of individual sensors.

Sonar Control Unit Replacement
CONSULT-III plus requires a network connection to download the appropriate configuration data and vehicle specification. This data is then written to the sonar control unit in the normal fashion.
Automatic Speed Control
Automatic speed control is standard and works in combination with other vehicle safety and braking systems, when equipped.

- Automatic Speed Control Device (ASCD)
- Forward Emergency Braking (FEB)
- Adaptive Brake Assistant (BA)

The steering column-mounted cruise control stalk (lever) is used to manage the automatic speed control and speed limiting functions.

1. Accelerate and set
2. Set following distance (rotate to change)
3. Store current speed or call up last stored speed
4. Decelerate and set
5. Deactivate cruise control

NOTE: Switch shown above is for Intelligent Cruise Control. Automatic speed control switch functions the same without distance setting.
Intelligent Cruise Control

The intelligent cruise control (ICC) system helps the driver sustain a set speed and distance to a preceding vehicle. If the preceding vehicle comes to a stop, the system brings the vehicle to a standstill. When the preceding vehicle accelerates from a standstill, ICC supports a return to acceleration by a single tap of a column switch or a reapplication of the accelerator pedal.

The system operates up to 125 mph (200 km/h).

Long Range Radar Alignment

An intelligent cruise control (ICC) sensor is located behind the front Infiniti emblem in the radiator trim. The sensor contains:

- Control Unit
- Long Range Radar Sensor (LRR)

Detection range and frequency is as follows:

- 100 feet (30 m) for a detection angle of 30°
- 100 feet to 330 feet (30 m to 100 m) for a detection angle of 16°
- 330 feet to 660 feet (100 m to 200 m) for a detection angle of 12°
- Carrier frequency 77 GHz

Sensor alignment is required using CONSULT-III plus whenever the ICC sensor is removed, reinstalled, or replaced.

Two methods of alignment are provided in the service manual. The SST below supports alignment.
Driver Assistance Systems
Driver assistance systems include a range of driving safety systems that work actively and passively, depending on vehicle system configuration. These include:

- Lane Departure Warning (LDW)
- Blind Spot Warning (BSW)
- Forward Emergency Braking (FEB)
- Rearview camera

Unlike other Infiniti models, there is no DAS or ADAS specific control unit on the QX30. DAS is decentralized on QX30, relying on CAN communication between participating system control units and components using the electronic ignition switch (EIS) as a gateway for the transmission of information.

Components
The driver assistance components include:

- ICC sensor
- Distance sensor (non-ICC vehicles)
- Front camera unit
- Side radar LH/RH

ICC Sensor
Installed behind the front grille, the ICC sensor detects a vehicle ahead by using millimeter waves and has an extended range in support of ICC and forward emergency braking (FEB). Radar reflected from a vehicle ahead is used to calculate distance and relative speed. The ICC sensor control unit transmits the presence or absence of a vehicle ahead, and its distance.
Front Camera Unit
The front camera unit detects lane markers and is located above the windshield glass. It supports:
- Lane Departure Warning (LDW)
- High Beam Assist (HBA)

Distance Sensor (non-ICC vehicles)
Installed in the back of the front bumper grille, it detects a vehicle ahead by using millimeter waves in support of FEB. Radar reflected from a vehicle ahead is used to calculate distance and relative speed. No adjustment is required if removed or replaced.

Side Radar LH/RH
Installed behind the rear bumper, the side radars detect other vehicles in an adjacent lane in support of:
- Blind Spot Warning (BSW)
Lane Departure Warning
The front camera unit detects unintentional driving across lane markings and warns the driver by vibrating the steering wheel. Lane departure warning (LDW) can be switched ON/OFF via the vehicle information display menu.

The following operating modes are available for selection:

- **Standard**: Sensitivity increased (warnings issued earlier and more frequently)
- **Adaptive**: Sensitivity reduced (warnings issued later and less often)

System limitations/requirements include:

- From a vehicle speed of 37 mph (60 km/h)
- Recognizable lane markings are present
- Radius of curve is no less than 490 feet (150 m)
- Track width between 8 to 15 feet (2.5 to 4.6 m)

Blind Spot Warning
BSW monitors the rear and side areas of the vehicle using short range radar and if necessary, informs the driver that an intentional lane change (turn signal active) is not recommended. BSW can be switched On/Off via the vehicle information display menu.

A visual warning is issued by the respective front door control module via the BSW warning indicator in the respective side mirror base. While relevant data is evaluated by all of the rear radar sensors, the warning output is the responsibility of the right rear bumper radar sensor. System limitations/requirements:

- No under or over voltage
- Engine running
- Vehicle moving forward
- Vehicle speed above 18 mph (30 km/h)

1. Vehicle in lane
2. Vehicle crosses outer lane - steering wheel vibration initiated
3. Driver steers back into lane
Front camera adjustment (LDW & HBA)
Always adjust the camera aiming after removing and installing or replacing the front camera unit. Target dimension detail and aiming procedure are provided in the service manual.

1. Board
2. String
3. Printed target
Height of target center: 50.1 in. (1275 mm)
Rearview camera
The rearview camera displays the area behind the vehicle on the AV display control unit when reverse gear is selected. The camera system calculates guide lines based on the steering angle and other stored vehicle parameters. The steering angle is obtained via CAN from the steering column control unit. The predictive course lines can be turned off or on using the Infiniti controller.
Restraints

QX30’s passive safety measures relating to pyrotechnics include:

- Driver/front passenger air bag (dual stage, adaptive)
- Driver/front passenger side bags at front, with thorax/pelvis bag design
- Driver knee bag
- Passenger knee bag
- Left and right curtain bags above both seat rows (additionally used as roll over bags)
- Front seat belts with emergency tensioning retractors and belt force limitation
- Rear seat belts on outer seats with emergency tensioning retractors and belt force limitation
- ISOFIX and top tether child seat anchors on the two outer seats in the rear passenger compartment
- Automatic child seat recognition air bag OFF indicator lamp
- Front and rear seat belt status display

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Curtain air bag module</td>
</tr>
<tr>
<td>2.</td>
<td>Seat belt buckle</td>
</tr>
<tr>
<td>3.</td>
<td>Passenger air bag module</td>
</tr>
<tr>
<td>4.</td>
<td>Knee air bag module</td>
</tr>
<tr>
<td>5.</td>
<td>BCM</td>
</tr>
<tr>
<td>6.</td>
<td>Combination meter (air bag warning lamp)</td>
</tr>
<tr>
<td>7.</td>
<td>Steering column control module</td>
</tr>
<tr>
<td>8.</td>
<td>Driver air bag module</td>
</tr>
<tr>
<td>9.</td>
<td>Side air bag module</td>
</tr>
<tr>
<td>10.</td>
<td>Rear seat belt pretensioner</td>
</tr>
<tr>
<td>11.</td>
<td>Rear door satellite sensor</td>
</tr>
<tr>
<td>12.</td>
<td>Front seat belt pretensioner</td>
</tr>
<tr>
<td>13.</td>
<td>B-pillar satellite sensor</td>
</tr>
<tr>
<td>14.</td>
<td>Front door satellite sensor</td>
</tr>
<tr>
<td>15.</td>
<td>Air bag diagnosis sensor unit</td>
</tr>
<tr>
<td>16.</td>
<td>Crash zone sensor</td>
</tr>
<tr>
<td>17.</td>
<td>Occupant classification system control unit</td>
</tr>
<tr>
<td>18.</td>
<td>Occupant classification system sensor</td>
</tr>
</tbody>
</table>
Air Bag Module
The air bag module is positioned centrally in the vehicle directly under the center console. Its main responsibilities include:

- Monitoring of front, lateral, and rear crash sensors
- Monitoring of internal rollover sensors where roll over protection is required
- Monitoring of seat belt fastening
- Monitoring of passenger seat occupancy
- Receipt and transmission of CAN network safety related information
- Safety check and display of warning information
- Deployment of seat belt pretensioners
- Deployment of air bags
- Deployment of main battery pyrofuse
- Post-crash function including engine stop, fuel shut off, door unlock, and hazard warning

System flexibility can accommodate up to ten separate external crash/impact sensors allowing up to ten air bags to be controlled, all of which is configurable with CONSULT-III plus. When replacing an air bag module however, it is important to note that there are two part numbers available, depending on if roll over protection is fitted.

Air Bag Control Unit Replacement
CONSULT-III plus procedures must be performed before and after replacement of an air bag control unit.

Crash/Impact Sensors
Two types of external crash/impact sensors exist, depending on position and application.

G Sensor
- Front Crash Sensor (front chassis legs)
- Side Crash Sensor (B pillars)
- Rear Crash Sensor (air bag module)

Pressure Sensor
- Side Impact (front and rear doors)
Pyrofuse
The pyrofuse is installed on the positive battery terminal. The fuse is deployed by the air bag module in the event of air bag deployment and cuts the 12V on-board electrical supply to the starter motor, and the connection to the alternator.

Service Point
Disconnect the battery at the negative terminal in the normal manner. The pyrofuse connector should be removed using the same procedures as other pyrotechnic devices. Refer to service manual for detail. Do not discharge storage capacitors by disconnecting the negative cable and shorting to the positive cable.
Front Passenger Seat Occupancy Detection
The air bag module uses a silicone filled weight sensing pressure mat in the passenger seat base cushion to determine the following states depending on the weight classification measured:
- Seat not occupied
- Seat occupied
- Light weight (e.g. child seat)
- Person detected

The passenger air bag is automatically deactivated if the seat is not occupied or a child seat is fitted. The occupied signal is retained for a short time when pressure on the front passenger seat is relieved.

Zero Point Reset
The weight sensing calibration test tool SST J-51950 (shown above) must be used in conjunction with CONSULT-III plus to calibrate the air bag module weight sensing parameters when performing any of the following:
- Seat cushion removal or replacement
- Seat cover removal or replacement
- Sensor mat removal or replacement
- Seat heater removal or replacement
- The front passenger seat is removed, or replaced
Seat belts
Seat belt buckle switches are provided for both front seat positions to allow front seat belt status to be displayed on the instrument panel. Pyrotechnic ball bearing type seat belt pre tensioners with torsion bar belt force load limiters are fitted to the outer front and rear seats.

Pyrotechnic pretensioner

1. Seat belt
2. Reel
3. Ball bearings
4. Track
5. Torsion bar
6. Retractor pyrotechnic

Torsion bar load limiter
Air Bags
QX30 uses a maximum of eight air bags:

- 1 x driver air bag
- 1 x passenger air bag
- 1 x driver knee bag
- 1 x passenger knee bag
- 2 x front side thorax/pelvis air bags
- 2 x curtain air bags

The driver and passenger air bags are dual stage adaptive, depending on seat position, vehicle speed, and severity of impact.

Driver Air Bag Removal
Take all normal precautions when removing the driver air bag. Two indentations on the left and right hand side of the steering wheel body mark where the fabric must be punctured to gain access to the air bag release clips. (RH shown)

Emergency Call
The automatic emergency call function is operational when restraint systems are deployed, or can be activated manually by means of the SOS button in the overhead control panel.
The refrigerant circuit is the same regardless of system type. It is conventional in operation. Circuit main features include:

- Condenser and evaporator
- Variable swash plate compressor with magnetic clutch
- High and low pressure circuit service/test points
- Thermal expansion valve
- PAG oil type specific to refrigerant used

As with Q50, a double pipe heat exchanger consisting of a coaxial tube (tube within a tube) allows the refrigerant feed and return to flow close to each other. This provides additional refrigerant cooling, thus reducing the operating energy input of the refrigerant compressor (increased system efficiency).
HVAC Unit
A drain hose is attached to direct condensed moisture from the evaporator to the underside of the vehicle. Technicians must ensure this is attached correctly to prevent water ingress into the passenger compartment.

Air is drawn in via a fresh air/recirculation door and a single pipe blower. The blower motor is mounted separately from the housing by special rubber elements to minimize vibrations and reduce noise. The blower speed can be continuously varied with an energy-efficient, pulsed regulator. The in-cabin micro filter is accessed on the glove box side of the center stack.
Control Panel
While the InTouch center screen displays climate information, control is only performed via the control panel.

Automatic Climate Control Features
- Selectable dual zone air conditioning with on/off button
- Automatic temperature and fan speed adjustment with manual override
- Automatic air distribution with manual override via four stepper motors
- Additional rear center vent
- Digital adjustment via buttons(selector wheels)
- Display of left/right specified temperature via central panel
- Front and rear windshield defoggers
- Automatic air recirculation
- In-cabin micro filter with activated charcoal
- Coolant circulation pump used to support coolant flow at low engine RPM or when the residual heat function is being used
- Additional control sensors:
 - Evaporator Temperature Sensor
 - Refrigerant Pressure Sensor
 - Internal Temperature Sensor
 - Air Quality Sensor
 - Solar Sensor

1. LH Zone Temperature
2. Auto Mode ON/OFF
3. Windshield Defogger
4. Manual Airflow Increase
5. Manual Air Distribution
6. Central display panel
7. Air Recirculation ON/AUTO Switch (LED off when in auto mode)
8. HVAC System ON/OFF Switch
9. RH Zone Temperature
10. MAX Cooling Switch
11. Air Conditioning ON/OFF Switch
12. Manual Airflow Decrease
13. Rear Window Defogger
14. Single/Dual Zone Switch
Air Conditioning Filter
Removal of the glove box is not necessary. To replace the filter, simply remove the right lower kick panel and carefully fold back the passenger side carpet to reveal the interior relay/fuse box, auxiliary stop/start battery, and filter location. Two quick-release clips secure the filter cover. Remove and replace as shown.

Air Quality Sensor
This sensor provides information in support of the automatic recirculation function. It is sensitive to the following:
- Carbon Monoxide (CO)
- Nitrogen Oxides (NOx)
- Outside dew point temperature
- Relative humidity
- Ambient temperature
It is located adjacent to the interior ventilation air inlet, to the side of the plenum chamber.
Outside Air Temperature
Used to refine the climate control of the passenger compartment, it is fitted to the left side of the front bumper lower grill.

Interior Temperature Sensor
Fitted in the instrument panel, it is used for feedback to help maintain a consistent interior cabin temperature.
Sunload Sensor
The sensor is located in the center of the dash closest to the base of the windshield. It is used to trim the cabin temperature dependent on the vehicle's position in relation to the intensity and position of the sun.

Eco Stop/Start Function
Initially, the system prevents the engine from being stopped until the preselected interior temperature is reached. Once achieved however, if the interior temperature increases above the preselected value during subsequent stops, the air conditioning does not request a forced engine start in order to save energy, and the refrigerant compressor is not activated unless there is a risk of the windows fogging up. As a consequence, this can result in a reduced cooling output while the engine is stopped if the outside temperature is high. If this is not desired, the ECO stop/start function can be deactivated by pressing the ECO OFF button.

Auto Air Recirculation Mode
To prevent the windows from fogging up, the system automatically switches back to external ventilation in the following cases:
- After 5 minutes when the refrigerant compressor is shut off
- After 5 minutes if the outside temperatures is below approx. 44°F (7 °C)
- After 30 minutes if the outside temperatures is above approx. 44°F (7 °C)

Diagnosis
When performing diagnostics or talking to the customer, the following operational points are worth noting:
- When switching the air conditioning OFF, there may be a delay before the magnetic clutch disengages.
- Changes in diffuser outlet noise may be experienced periodically when in automatic recirculation mode.
- When making manual mode changes with the IGN ON/ENG OFF, there may be a delay before the changes take place when the engine has started.
Driver Controls
The accompanying diagrams show the layout of the instrument panel and main driver controls. This section takes a look at the functionality and service aspects of the steering wheel combination switch, central switch panel, and the rotary lighting switch.
Steering Wheel Combination Switch

The switch internal functionality is similar to that of other Infiniti models, however on QX30 it has a built-in steering wheel angle sensor. If the combination switch is removed or replaced, relearning of the steering wheel center position is done automatically without CONSULT intervention. Externally, differences are limited to the positioning and operation of its control stalks.
Central Switch Panel
Four variations of the central switch panel exist:
1. With hazard switch, ECO start/stop switch, passenger air bag On/Off LED, and anti-theft-protection indicator LED
2. As above (1) with seat heaters
3. As above (1) with parking assist cancel switch
4. As above (1) with parking assist cancel switch and seat heaters

Rotary Lighting Switch
The lighting switch has the following functionality:
- Parking lights
- Side marker lights
- Auto lights (OFF position when the ignition is off)
- Headlights
- Front fog lamp switch
- Manual headlamp leveller (halogen headlamps)

Four versions are available depending on vehicle specification:
- Manual headlight leveller
- Manual headlight leveller with front fog lamp switch
- Automatic (LED) headlight leveller
- Automatic (LED) headlight leveller with front fog lamp switch

NOTE: leaving in Park position for a very extended period may cause battery to discharge.
Instrument Panel

Combination meter versions exist depending on vehicle specification and trim level, as follows.

<table>
<thead>
<tr>
<th>NAM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Black and white</td>
<td>X</td>
</tr>
<tr>
<td>Color without ICC</td>
<td>X</td>
</tr>
<tr>
<td>Color with ICC</td>
<td>X</td>
</tr>
</tbody>
</table>

General Layout

1. Speedometer
2. Vehicle Information Display
3. Upper Information Display
4. Tachometer
5. Engine Coolant Temperature Gauge
6. Fuel Gauge

Speedometer

On vehicles with intelligent cruise control (ICC), the outer ring (2) of the speedometer (1) is divided into LED segments (3) that light up to indicate the available speed range when cruise control is activated.

A combination meter can be swapped between vehicles repeatedly while the total recorded distance is under 620 miles (1000 kms). After this distance has been achieved, the combination meter is locked to the vehicle.

The combination meter does not have immobilizer responsibilities.
Warning and Information Symbols
Some symbols are also displayed in the vehicle information display.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚹</td>
<td>Anti-lock Braking System (ABS) Warning Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Brake Warning Light (Red)</td>
</tr>
<tr>
<td>🚹</td>
<td>Low Tire Pressure Warning Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Malfunction Indicator Light (Yellow)</td>
</tr>
<tr>
<td>🚹</td>
<td>Distance Warning Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Parking Brake Warning Light (Red)</td>
</tr>
<tr>
<td>🚹</td>
<td>Parking Brake Warning Light (Yellow)</td>
</tr>
<tr>
<td>🚹</td>
<td>Coolant Warning Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Seat Belt (Driver and Front Passenger) Warning light</td>
</tr>
<tr>
<td>🚹</td>
<td>Supplemental Restraint System (SRS) Air Bag Warning Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Low Fuel Warning Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Turn Signal/Hazard Indicator Lights</td>
</tr>
<tr>
<td>🚹</td>
<td>Low Beam Indicator Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Vehicle Dynamic Control (VDC) OFF Indicator Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Front Fog Light Indicator Light</td>
</tr>
<tr>
<td>🚹</td>
<td>High Beam Assist Indicator Light</td>
</tr>
<tr>
<td>🚹</td>
<td>High Beam Indicator Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Side Light Indicator Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Vehicle Dynamic Control (VDC) Warning Light</td>
</tr>
<tr>
<td>🚹</td>
<td>Front Passenger Air Bag Status Light**</td>
</tr>
<tr>
<td>🚹</td>
<td>Parking Brake Warning Light (Red)</td>
</tr>
<tr>
<td>🚹</td>
<td>Parking Brake Warning Light (Yellow)</td>
</tr>
<tr>
<td>🚹</td>
<td>Coolant Warning Light</td>
</tr>
<tr>
<td>🚹</td>
<td>High Beam Assist Indicator Light</td>
</tr>
</tbody>
</table>

Service Point
A new meter requires configuration to the vehicle to account for fuel tank types (FWD/AWD) for example. This is achieved via the read/write process using the CONSULT-III plus Work Support function.

*: if equipped
**: located above heater and air conditioner controls
Vehicle Information Display

The instruments panel central display is used to convey driving information and vehicle set up parameters.

Depending on the vehicle equipment levels, the driver can scroll between the following vehicle information display sub menus by repeatedly pressing the left or right steering wheel buttons:

- Trip
- Navigation
- Audio
- Assist
- Service
- Settings

Pressing the OK button selects a sub menu, while pressing the up or down steering wheel buttons scrolls between the options within a sub menu. The owner's manual provides more information regarding the vehicle configurable parameters within the vehicle information display menu options.

Text Field ③ shows the selected menu or sub-menu as well as display messages.
Door Control
The driver door electrical architecture regarding the operation of electric windows, mirrors, door lock control, and lighting is shown below and consists of:

- LIN inputs to the driver’s door module
- Hardwire outputs from the driver’s door module
- CAN exchange of information with other vehicle control modules via either EIS or BCM modules.

The front passenger door electrical architecture is similarly laid out.
Door Modules
Both front doors are equipped with a door module. Each is accessed by removing the relevant door finisher. They are marked VL and VR to designate the appropriate side. Both modules are available as:
- With super lock and blind spot warning
- Without super lock and blind spot warning

Regardless of type, all door modules are software compatible with the following vehicle features:
- 7DCT
- Auto dimming
- Electric folding mirrors
- Seat memory
- Ambient lighting

Communication architecture between the two front door modules is shown below.
Door Switches
The front door switch operation is managed by the front door modules. Rear door switches are hard wired directly to the body control module (BCM). All electric window switches are all double detent to allow both specific positioning and one touch operation. Anti-pinch function is present on all electric windows.

Driver Door Switch Panel
To types of driver door switch panel exist depending on vehicle specification:
- Power window switch block with child lock and mirror adjustment switch.
- Power window switch block with child lock, mirror adjustment switch, and mirror folding function.

Central Locking Switch
The switch is fitted to the driver door panel and additionally on the passenger side door panel. Pressing and holding the lock or unlock button until a bleep is heard switches the vehicle's automatic locking feature ON or OFF without the use of the vehicle information display menu.

Electric Window Switches
- Power window switch in front passenger and rear doors.
Lighting
Two external lighting systems are available.
- Halogen Headlamps
- LED Headlamps

Halogen Headlamp System
The 60/55 W (H9) halogen front lighting system has manual adjustment. The front turn signal lamps utilize conventional PWY24W bulbs. All other external lighting is LED.
LED Headlamp System
The LED front combination lamps have automatic adjustment. With this system, all lamps are LED. System additions include:

- Active Front Lighting System (AFS)
- High Beam Assist (HBA)

1. Side Turn Signal Lamp
2. Parking Lamp/Daytime Running Light/Position Lamp
3. Parking Lamp/Daytime Running Light/Position Lamp
4. Headlamp (Hi/Lo)
5. Headlamp (Hi)
6. Cornering Lamp
7. Front Fog Lamp
8. Tail Lamp
9. Stop Lamp
10. Rear Turn Signal Lamp
11. Back-up Lamp/Rear Fog Lamp (Driver Side Only)
12. License Plate Lamp
13. High-mounted Stop Lamp
Headlamp Control unit
Each headlamp unit is equipped with a headlamp control unit, regardless of external lighting system. Each control unit is responsible for headlamp voltage protection, headlamp aiming (1), and swivel (2), depending on application. When replacing a headlamp control unit, you must perform various Work Support procedures using CONSULT-III plus, depending on the application.

LED Headlamp Control Module
When equipped with LED lighting, an extra LED control unit is fitted to the headlamp unit to control the LED high and low beam. Additional Work Support functions are required using CONSULT-III plus when replacing an LED control unit.
Auto Lights
The auto light system is managed by the BCM and can have the auto wipers included in its function. The function automatically turns ON/OFF the exterior lamps (headlamp Lo/Hi, fog lamp, position lamp, license plate lamp, and tail lamp) depending on the outside brightness.

Lighting Circuits
The basic halogen lighting circuit is shown below. Lighting request information is processed by the BCM and communicated to each front combination lamp unit. The combination meter displays the appropriate lighting selected.
This final lighting circuit diagram is associated with the active front lighting system (AFS) and high beam assist (HBA) system. These systems are only available if the vehicle is equipped with LED front headlamp system.

For comparison, the LED lighting circuit also utilizes hard wire and CAN communication, however additional LIN communication is used internally between each combination lamp control unit.
Active Adaptive Front Lighting System
Active adaptive front lighting system (AFS) is controlled by each headlamp control unit and comprises the following features:

- **Active Curve Control** – each headlamp swivels according to steering wheel input and road speed.
- **Cornering Lamp Control** – additional area illuminated when cornering (requires indicator operation).
- **Headlamp Automatic Aiming Control** – automatic headlamp beam height adjustment.

All of the above features require the following conditions to be met:

- Engine running
- Headlamp low beam selected
- Vehicle being driven

Headlamp Automatic Aiming Control
Headlamp automatic leveling is required when equipped with LED headlamps. Suspension height sensors are fitted to right hand side suspension components, front and rear. Information from these sensors is sent to the LH headlamp control unit for headlamp aiming purposes. Sensor initialization is required in Work Support using CONSULT III plus when replacing a front combination lamp or when reinstalling/replacing a height sensor.
High Beam Assist System
When the driver sets the lighting switch to high beam position, the high beam assist (HBA) system automatically switches the headlamp to the low beam when a vehicle ahead or an oncoming vehicle appears. The high beam assist system is controlled by a combination of the BCM and front camera unit.

Bulb Replacement
Front lighting service access points are built into the front wheel inner wheel arch liners.
Wipers
Front Wipers

The steering column control module detects the combination switch position and transmits the front wiper request signal to the BCM via CAN communication. The BCM controls both the front wiper relay and front wiper Hi/Lo relay. When in the auto wipe position, the infrared rain sensor detection information is forwarded to the BCM via a serial link. A hood open signal prevents wiper operation up to a road speed of approx. 4 mph (6 km/h) to eliminate damage.
Rear Wiper
The steering column control module detects the combination switch position and transmits the rear wiper request signal to the BCM via CAN communication. The BCM controls the rear wiper relay and washer pump. Rear wiper operation is linked to reverse gear selection, depending on a number of operation conditions being met.
Spray Nozzle Hose Heater
If the outside temperature is 41°F (5°C) or less, the spray nozzle hose heater prevents the washer fluid in the spray nozzles and the spray nozzle hose from freezing.

Wiper Blade Replacement
The wiper blade assembly can only be replaced as a complete assembly.
Seats
Standard and Sport seat options are available. Both can be equipped with either manual operation or ten point power seat adjustment. Seat heaters and four-way electrical lumbar support adjustment are standard.
Seat Position and Memory

Driver and passenger ten-point power seat adjustment option includes three position seat memory storage, activated via separate door mounted seat switch panels.

Seat memory positions are stored in the relevant seat position control module. Linked external door mirror positions and reverse gear passenger mirror park positioning is stored in the driver seat position control module, however. The EIS acts as the gateway to allow information to flow between the front door modules and the seat position control modules.
Seat Control Modules
Three versions of the seat position control module are available, depending on vehicle specification.
- Without heated front seats
- Power seat with memory and seat heating (driver side)
- Power seat with memory and seat heating (passenger side)

Seat Heaters
The three red indicator lights in each seat heater switch indicate the selected heating level. The system automatically switches between levels as follows:
- Level 3 to level 2 after approximately eight minutes
- Level 2 to level 1 after approximately ten minutes
- Level 1 to OFF after additional 20 minutes

If the vehicle battery voltage is too low, the seat heating function may be switched off.

The automatic drive positioner system found on other Infiniti models, including entry/exit assist and I-key interlock function, is not currently included on QX30.
Security
Component Locations
Door lock control, engine start control and immobilizer component locations are shown below.

A. View with driver door
B. View with front door finisher removed
C. View with center console assembly removed
D. View with rear door finisher removed
E. View with luggage side finisher lid removed
F. View with luggage floor board removed
G. View with back door panel
H. View with back door inner finisher removed
1. Front Door Lock Assembly (Driver Side)
2. Right Front Intelligent Key Door Handle
3. Electronic Ignition Switch Control Unit
4. Combination Meter
5. BCM
6. Air Bag Diagnosis Sensor Unit
7. Left Front Intelligent Key Door Handle
8. Front Door Lock Assembly (Passenger Side)
9. Rear Door Lock Assembly LH
10. Fuel Filler Lid Lock Assembly
11. Back Door Lock Assembly
12. Window Antenna
13. Rear Door Lock Assembly RH
14. Door Lock and Unlock Switch
15. Front Door Control Module
16. Front Inside Key Antenna
17. Outside Key Antenna
18. Intelligent Key Unit
19. Rear Inside Key Antenna
20. Back Door Opener Switch
21. Remote Keyless Entry Receiver
Door Locks
Electrical door lock mechanisms are fitted to all four doors, the rear tailgate, and the fuel filler lid. The driver door is the only door lock fitted with a mechanical key cylinder.

To remove a door lock, first remove the appropriate door finisher and drill out the rivets of the door module to gain access to the lock mechanism. A 7 mm drill is required.

Front and rear left hand door modules are shown on the following page.

Service Point
Power electric window motors can be removed without removing the door module.

Note: Speaker replacement requires door module removal.
Front Door Module

1. Rear Gasket
2. Key Rod (Driver Side)
3. Front Door Rear Sash
4. Door Lock Assembly
5. Torx Bolt
6. Lock Knob Rod
7. Door Lock Cover (Rear)
8. Front Door Module
9. Inside Handle

10. Door Lock Cover (Front)
11. Inside Handle Cable
12. Lock Knob Rod Connector
13. Outside Handle Bracket
14. Front Gasket
15. Outside Handle Grip
16. Outside Handle Escutcheon

Rear Door Module

1. Rear Gasket
2. Rear Door Rear Sash
3. Door Lock Assembly
4. Lock Knob Rod
5. Torx Bolt
6. Door Lock Cover (Rear)
7. Rear Door Module
8. Inside Handle
9. Door Lock Cover (Front)

10. Inside Handle Cable
11. Lock Knob Rod Protector
12. Outside Handle Bracket
13. Front Gasket
14. Outside Handle Grip
15. Outside Handle Escutcheon

Pawl
Vehicle Front
To reinstall the door finishers, new rivets must be used with a commercial riveter.

Fuel Lid Assembly
Pulling hooks must be used to correctly remove the fuel lid base assembly.

1. Fuel Filler Lid Base Assembly
2. Fuel Filler Lid Assembly
3. Fuel Filler Lid Opener Actuator
4. Grommet
 Pawl
Emergency Fuel Lid Lock Release
Partial removal of the rear inner wheel arch liner allows access to the fuel lid release grommet.
Removing the grommet allows screwdriver insertion to press against the release latch as shown.

Emergency Tailgate Release
Door Lock Key Control
Both remote central door locking (without Intelligent key) and keyless entry options (with intelligent key) are available. Regardless of the option, vehicle key lock (1) and unlock (2) operations remain the same.

Emergency Mechanical Key
The release latch (1) allows removal of the emergency mechanical key.

Key Battery Replacement
Inverting the emergency mechanical key and replacing it in the key body releases the key cover to reveal the battery.

1. Key Blade
2. Battery Cover
Central Locking System
The system electronically locks/unlocks the vehicle doors, tailgate, and fuel filler lid, and can be operated by the following methods:

- Keyless (with intelligent key)
- Key fob (without intelligent key)
- Internal driver door lock and unlock switch

The central locking system features the following functionality:

- Tailgate opening
- Reminder function (one flash lock, two flash unlock)
- Selective unlocking*
- Auto re-locking
- Vehicle speed auto locking**
- Airbag deployment vehicle unlock
- Play (child) protection function

*Press key fob lock and unlock buttons simultaneously for approximately five seconds to switch feature On/Off.

**Press the appropriate driver door internal lock/unlock switch for approximately five seconds to switch feature On/Off.
Remote Central Locking
Pressing the key lock/unlock buttons sends a fixed and variable code (315 MHz) to the remote keyless entry receiver fitted on the underside of the tailgate. Recognition of the key by the electronic ignition switch (EIS) allows entry/exit.

Keyless Central Locking
When either key button is pressed, fixed and variable codes are sent via the remote keyless entry receiver to the intelligent key unit. Key verification is then transmitted via CAN to the EIS.

With Intelligent Key System

Without Intelligent Key System
The intelligent key system offers a keyless entry alternative to the remote key fob central locking/unlocking featured on the previous page. Additional components include:

- Front door intelligent key door handles
- Remote keyless entry receiver

Capacitive intelligent key front door handles detect the presence of a key.
- Grip (1) to unlock
- Touch (2) to lock

The appropriate outside antennas receives the key identification. This signal is read by the window mounted remote keyless entry receiver.

Intelligent Key Unit

The intelligent key unit controls the intelligent key system, and is installed behind the luggage room left side finisher. If replacing the unit, it must be configured with CONSULT III plus using a network connection to download (write) the new configuration.
Immobilizer
The immobilizer system on the QX30 prevents unauthorized vehicle entry and the engine from being started by unrecognized keys. A CONSULT-III plus online registration and configuration procedure is required if any of the following immobilizer related control units is replaced.

- Electronic Ignition Switch (EIS)
- Engine Control Module
- Transmission Control Module (AT)
- Electronic Shift Control Unit (AT)

Vehicle Alarm
The system reduces the possibility of a theft or vandalism by sounding the horn and blinking the hazard warning lamps continuously. The system activates the horn and hazard warning lamps when it detects that the door or hood is opened, or there is an attempt to enter into the passenger room.

Up to eight vehicle keys can be registered to the EIS. Key registration and key management are also completed online. Key code validation takes place between the above control units every time a registered key is used. A security indicator lamp, positioned in the upper control panel, blinks when the ignition switch is in any position other than ON to warn that the vehicle is equipped with an immobilizer. Vehicle locking and unlocking has already been covered in this text and uses radio wave with fixed and variable transmitted codes in its operation. When starting the engine, the EIS energizes the inserted key to transmit a pre-agreed infra red hash code that the EIS reads and sends on to the ECM via CAN. Confirmation of previously agreed hash code by the ECM allows the engine start procedure to commence.
Glass and Windows

Windshield Glass

Piano wire can be used to cut adhesive if a windshield cutter is not successful. Windshield glass should always be replaced with new glass after removal.

Interior Mirror

The sensor unit in the mirror detects the brightness of the headlights of the vehicle behind and automatically adjusts to reduce the brightness.

Piano wire can be used to cut adhesive if a windshield cutter is not successful. Windshield glass should always be replaced with new glass after removal.

1. Windshield Glass Spacer*
2. Windshield Glass*
3. Windshield Glass Moulding*
4. Electric Unit Bracket*
5. Inside Mirror Base*
6. Glass Primer
7. Adhesive Painted Surface Primer
8. Roof Panel
9. Glass Roof
10. Cowl Top Cover
11. Cowl Top Panel
12. Front Pillar Garnish
13. Body Side Outer Panel

* Windshield Glass Assembly Parts
Door Mirrors
Three types of door mirrors are available, depending on vehicle specification. All door mirrors are heated and fitted with puddle lamps.

- Electric fold
- Electric fold with camera
- Electric fold with memory and camera

The mirror shown to the right is electric folding with memory and camera.
Power Windows

1. Rear Power Window Switch RH
2. Rear Power Window Motor
3. Front Power Window Switch (Passenger Side)
4. Front Power Window Motor (Passenger Side)
5. Right Front Door Control Unit
6. Electronic Stability Program Control Unit
7. Air Bag Diagnosis Sensor Unit
8. BCM
9. Left Front Door Control Unit
10. Power Window Main Switch
11. Rear Power Window Switch LH
12. Remote Keyless Entry Receiver
13. Front Power Window Motor (Driver Side)
14. Rear Power Window Motor LH

The power window system is activated by the power window switch when the ignition switch is turned ON. The power window main switch opens/closes all door glass. The front passenger and rear power window switches open/close the corresponding door glass.

AUTO UP/DOWN operation can be performed when each power window switch is pushed or pulled to AUTO operation position.

The power window lock switch can lock rear power windows.
If door glass receives resistance that is the specified value or more while power window is in AUTO-UP operation, the power window operates in the reverse direction.
Power Window Auto Operation
AUTO UP/DOWN operation can be performed when each power window switch is pulled or pressed to AUTO operation position. The Hall sensor detects the movement of the power window motor and transmits the hall sensor signal to the power window switch while the power window motor is operating. The power window switch reads the changes of the hall sensor signal and stops AUTO operation when the door glass is at the fully opened/closed position.

LIN Communication
The power window main switch and left front door control unit transmit and receive LIN communication. LIN communication transmits the power window main switch operation signals to the left front door control unit.

Rear Power Window Lock
When the power window lock switch is turned ON, it controls each rear power window switch and disables the operation of the power window by the rear power window switch.

Operation Condition
When all door glass AUTO-UP operation is performed, the anti-pinch function does not operate just before the door glass closes and is fully closed.

Pre-safe Function
When the electronic stability program control unit detects operation of the ABS system, all power windows close, but a gap of 1.8 – 2.2 in (46 – 54 mm) is maintained to minimize the risk of injury.

Crash Deflation Function
The air bag diagnosis sensor unit transmits an impact detection information signal via CAN communication to the left front door control unit, right front door control unit, and BCM. These modules then actuate all power window motors downward. This creates a gap to allow the smoke generated during air bag inflation to disperse.
Heated Rear Glass
The rear window and door mirror heating functions operate in tandem and require the following:
- Ignition ON
- No under or over voltage detected
- Consumer shutoff not active

Within the door mirror heating function, there are a number of sub operations:
- Manual ON/OFF function - Air conditioning module reads rear window defogger switch status and activates rear screen and door mirror heating via the rear window defogger relay.
- Automatic switch-on function – To assist in engine cold start warm up cycle, the ECM requests defogger action to electrically load the engine (15 min).
- Determining switch-on duration function – Air conditioning module determines duration of defogger operation (2-26 min) based on outside air temperature and vehicle speed.
- Auto stop shutoff function – Defogger is switched off temporarily when the engine stops as part of the operation of the stop/start system.
- Consumer shutoff function – if excessive battery discharge is detected, the defogger function may be switched off temporarily (lamp remains lit).

Heated Washer System
Spray nozzle/hose heater operating conditions:
- Engine running
- Outside temperature is 41°F (5°C) or less

The spray nozzle and spray nozzle hose heater prevent the washer fluid in the spray nozzles and the spray nozzle hose from freezing.
QX30 New Model Training

Paint
QX30 paint is applied by a physical vapor deposition process that is completely new to Infiniti. It is considered the highest quality, most durable paint process currently available and provides a blemish free finish. At launch, the body exterior colors and codes include:

<table>
<thead>
<tr>
<th>Paint Type</th>
<th>Color</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>Black Obsidian</td>
<td>KH3</td>
</tr>
<tr>
<td>Metallic</td>
<td>Majestic White</td>
<td>QAB</td>
</tr>
<tr>
<td>Metallic</td>
<td>Blade Silver</td>
<td>KY0</td>
</tr>
<tr>
<td>Metallic</td>
<td>Graphite Shadow</td>
<td>KAD</td>
</tr>
<tr>
<td>Metallic</td>
<td>Malbec Black</td>
<td>GAC</td>
</tr>
<tr>
<td>Metallic</td>
<td>Magnetic Red</td>
<td>NAJ</td>
</tr>
<tr>
<td>Metallic</td>
<td>Chestnut Bronze</td>
<td>CAN</td>
</tr>
<tr>
<td>Metallic</td>
<td>Ink Blue</td>
<td>RBN</td>
</tr>
<tr>
<td>Metallic</td>
<td>Liquid Copper</td>
<td>NAX</td>
</tr>
</tbody>
</table>

Body
The use of high strength and ultra-high strength steel accounts for over 60% of the bodyshell construction. This saves weight while improving safety and crash protection. Panel materials include:
- Steel - Body construction. Door, trunk, roof, and side panels
- Aluminium - Sculptured hood
- Lightweight plastic - Front and rear bumpers, inner wheel arches, door mirror housings
- Glass roof - Optional

The mechanical tailgate is double strut damped and supports electric lock operation.
Noise, Vibration and Harshness (NVH)
Much attention has been made to minimize the intrusion of outside road and powertrain noise into the passenger compartment. Brown/beige components below are NVH and grey are primarily aerodynamic.

Front Wing/Door Shut Baffle
- Plastic insert
- Close fit provides barrier to airborne noise from engine and front wheel arch area
- LHS shown

Hood Hinge/Front Wing Baffle
- Plastic insert
- Foam backed
- Close fit provides barrier to airborne noise from engine and front wheel arch area
- Incorrect fitment can cause external door panel damage
- Door assembly must be removed from its hinges to replace
- LHS shown

Hood Sound Deadening

Particular attention has been paid to the air flow and noise emanating from under the hood.
Styling
Overall QX30 styling is marked by dramatic curves and dynamic lines to make an emotional statement.

On Sport models, sills are body color coded to visually lower the stance.

A special metal plating process for the front Infiniti emblem allows the radar waves of the Intelligent Cruise Control (ICC) sensor to pass through the badge. This removes the unsightly need for a visible transmitter and is a first for Infiniti. Use of high quality materials accentuate the progressive styling further.

Satin chrome-plated trim is used instead of plastic chrome trim found on competitors. There is a consistent use of black lacquer trim on many exterior elements.

Infiniti signature grille hints at a bridge reflected in water creating a pattern that is not symmetrical. The hood flows up and over projecting a wave action that channels wind for aerodynamic efficiency.

The rear quarter is non glass black lacquer with a satin chrome finish.
Emblem
In addition to providing a high quality exterior appearance, the emblem is part of the safety system. The metal plating method enables the radar wave to penetrate the emblem.

Rear Spoiler

1. Rear Spoiler
2. Rear Side Spoiler LH
3. Rear Side Spoiler RH
Kick Plate
When removing the outer kick plate, always use a removal tool that is made of plastic to prevent damage.

Before installation, take the following precautions:

- Visually check clips for deformation and damage. Replace with new clips if necessary.
- Check that clips and pawl are accurately aligned with the portions on dash side finisher and center pillar lower garnish, and then install by pressing in.

Back Door

1. Back Door Hinge
2. Back Door Striker
3. Stud Ball
4. Back Door Stay
5. Back Door Stay Bracket
6. Bumper Rubber
7. Bumper Rubber Bracket
8. Back Door Panel
9. Back Door Weatherstrip
A. Center Mark
B. Seam
Audio Visual and Navigation

InTouch

The audio, visual, and navigation systems are supported by the now familiar Infiniti InTouch system.
The following component locations are for a vehicle without BOSE audio system.
With BOSE, the main additions are a sub woofer (1) and amplifier (2) fitted in the spare wheel well.

Display Control Unit
The display control unit controls the Infiniti InTouch screen and integrates the following functions:
- Display
- Bluetooth® module
The display control unit can store applications in the built-in memory by connecting a cell phone via Bluetooth® communication or USB connection.

<table>
<thead>
<tr>
<th>Display</th>
<th>Screen Size</th>
<th>8-inch Wide VGA (152.4 x 91.44 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Pixels</td>
<td>800 x 480 Pixels</td>
</tr>
<tr>
<td></td>
<td>Drive Type</td>
<td>TFT Active Matrix</td>
</tr>
<tr>
<td></td>
<td>Touch Panel Detection</td>
<td>Firm/Glass Capacitive</td>
</tr>
<tr>
<td>Capacity (for Application Software)</td>
<td>512 MB</td>
<td></td>
</tr>
<tr>
<td>Bluetooth® Module</td>
<td>Bluetooth® Audio</td>
<td>Compliant Communication Type</td>
</tr>
<tr>
<td>Hands-free Phone</td>
<td>Bluetooth® Audio</td>
<td>Wireless Connection</td>
</tr>
<tr>
<td>Other Functions</td>
<td>Voice Recognition Function</td>
<td></td>
</tr>
</tbody>
</table>
QX30 New Model Training

NAVI Control Unit
NAVI control unit controls the navigation system of Infiniti InTouch.
It integrates a gyro sensor and acceleration sensor, and calculates the vehicle position by combining the vehicle speed signal, reverse signal, and location information received from the GPS antenna.
Map data is obtained from the SD card that is inserted in the external data input box (SD card slot).

AV Control Unit
AV control unit controls the audio system of Infiniti InTouch.

<table>
<thead>
<tr>
<th>Amplifier Output (Models without BOSE)</th>
<th>40 W x 4 ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD Drive</td>
<td>Playable Disc</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>CD-R</td>
</tr>
<tr>
<td>CD-R</td>
<td>CD-RW</td>
</tr>
<tr>
<td>Playable Format</td>
<td>MP3</td>
</tr>
<tr>
<td></td>
<td>WMA</td>
</tr>
<tr>
<td></td>
<td>AAC</td>
</tr>
<tr>
<td>Text Display Function</td>
<td>ID3/WMA/AAC Tag</td>
</tr>
<tr>
<td></td>
<td>Artist Name</td>
</tr>
<tr>
<td></td>
<td>Album Title</td>
</tr>
<tr>
<td></td>
<td>Song Title</td>
</tr>
</tbody>
</table>
External Data Input (SD Card)
External data input box (SD card) records the map data from the SD card, and is then used by the navigation system.

External Data Input (USB)
External data input box (USB) comprises 2 USB ports. External devices can be connected and can send signals to the display control unit via USB communication.

Active Noise Control Unit

The active noise control unit includes the following functions:

- Active Noise Cancellation
- Active Sound Enhancement
- Diagnosis function with CONSULT-III plus

CAN communication lines connected to the active noise control unit are used for the active sound enhancement and diagnosis function with CONSULT-III plus.
Active Noise Cancellation

With BOSE
The front and rear microphones are used for the active noise cancellation system. The power is supplied from the BOSE amp to the microphone, transmitting sound signals to the BOSE amp during active noise cancellation.

Without BOSE
The front and rear microphones are used for the active noise cancellation system. The power is supplied from the active noise control unit to the microphone, transmitting sound signals to the active noise control unit during active noise cancellation.

Active Sound Enhancement
During driving, active sound enhancement improves the quality of engine sound heard in the vehicle by producing a sound via the speakers according to engine speeds.
The active noise control unit calculates the frequency, quality, and volume of engine sound from engine speed signal, engine torque signal, accelerator pedal position signal, and vehicle speed signal, and transmits the sound signal to AV control unit.
When the AV control unit receives the sound signal from active noise control unit, it transmits the sound signal to each speaker.
The AV control unit mixes the sound signal received from active noise control unit with the sound from audio, etc., and transmits the sound signal to each speaker.
On-board Diagnosis
The InTouch display control unit is the only control unit on QX30 that has a self-diagnosis capability. Activation of the on-board diagnosis is similar to the InTouch fitted to Q50.

1. Start the engine.
2. Turn the audio system OFF.
3. Touch the Settings icon to enter the settings menu screen.

4. Press the seek/track up switch at least three times (within 15 seconds after the settings menu screen displays). If the self-diagnosis mode does not start after pressing the seek/track up switch more than four times, press the Menu switch again.

5. Touch the screen in the area shown in the illustration for three seconds or more.
6. The fault diagnosis initial screen is displayed, and then either Self Diagnosis or Confirmation/Adjustment can be selected.

Details of these menu options are shown on the following page.
Mode Description

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Diagnosis</td>
<td>Display control unit diagnosis. Diagnosis of connections across system components.</td>
</tr>
<tr>
<td>Configuration/</td>
<td>Display Diagnosis The following check functions are available:</td>
</tr>
<tr>
<td>Adjustment</td>
<td>• Color tone check by color bar display, white display, and black display</td>
</tr>
<tr>
<td></td>
<td>• Light and shade check by greyscale display</td>
</tr>
<tr>
<td></td>
<td>• Touch panel check</td>
</tr>
<tr>
<td></td>
<td>• Sensor sensitivity settings</td>
</tr>
<tr>
<td>Vehicle Signals</td>
<td>Diagnosis of signals.</td>
</tr>
<tr>
<td>Speaker Test</td>
<td>Speaker connection can be confirmed by test tone.</td>
</tr>
<tr>
<td>Navigation¹</td>
<td>Confirmation of GPS reception status. Display simulated navigation menu.</td>
</tr>
<tr>
<td>Error History</td>
<td>Display of error history. Select the malfunctioning item to display further detail.</td>
</tr>
<tr>
<td>AV COMM Diagnosis</td>
<td>Communication condition of each Infiniti InTouch unit.</td>
</tr>
<tr>
<td>Clock Setting²</td>
<td>Adjustment of date and time.</td>
</tr>
<tr>
<td>Camera Control</td>
<td>Camera control signal check. Guide line position adjustment.</td>
</tr>
<tr>
<td>Delete Unit Connection Log</td>
<td>Erase connection history of unit and error history.</td>
</tr>
<tr>
<td>Reset Settings</td>
<td>Reset data settings.</td>
</tr>
<tr>
<td>Version Information</td>
<td>Version information is displayed for the display control unit, NAVI control unit, AV control unit, BOSE amp, preset switch, and around view monitor unit.</td>
</tr>
<tr>
<td>Program Update</td>
<td>Update of control unit.</td>
</tr>
<tr>
<td>DAB</td>
<td>Display information relating to DAB function.</td>
</tr>
<tr>
<td>Switch Information</td>
<td>Display switch information.</td>
</tr>
<tr>
<td>ANC/ASC Diagnosis²</td>
<td>Display active noise cancellation and active sound enhancement.</td>
</tr>
<tr>
<td>Hands-free Phone</td>
<td>Volume adjustment of hands-free phone. Microphone speaker check.</td>
</tr>
</tbody>
</table>

¹ Only models with navigation system
² Models with BOSE audio system
Around View Monitor
Incorporated in the InTouch system around view monitor (AVM) is the familiar system seen on other Infiniti models.

AVM Control Unit
The AVM control unit is located in left side of the luggage room.

Navigation System
The navigation system can be operated with the preset switch, multifunction switch, and display control unit.

Refer to the owner’s manual for additional details.