<table>
<thead>
<tr>
<th>Section 1: Text</th>
<th>Frame#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>High Voltage Safety</td>
<td>5</td>
</tr>
<tr>
<td>Hybrid Systems Overview</td>
<td>29</td>
</tr>
<tr>
<td>Hybrid Specific Engine Systems</td>
<td>46</td>
</tr>
<tr>
<td>Hybrid Specific Transmissions</td>
<td>50</td>
</tr>
<tr>
<td>High Voltage Battery System</td>
<td>53</td>
</tr>
<tr>
<td>Electric Power Steering (EPS) - Altima</td>
<td>69</td>
</tr>
<tr>
<td>Traction Motor System</td>
<td>73</td>
</tr>
<tr>
<td>Hybrid Control System</td>
<td>89</td>
</tr>
<tr>
<td>Hybrid Specific Brake Systems</td>
<td>102</td>
</tr>
<tr>
<td>Approaching Vehicle Sound for Pedestrians</td>
<td>113</td>
</tr>
<tr>
<td>Hybrid Specific HVAC Components</td>
<td>117</td>
</tr>
<tr>
<td>CAN Communication</td>
<td>125</td>
</tr>
<tr>
<td>Noise and Vibration Control</td>
<td>127</td>
</tr>
<tr>
<td>Appendix</td>
<td>133</td>
</tr>
<tr>
<td>Glossary</td>
<td>135</td>
</tr>
</tbody>
</table>
Section 2: Modules

Module 1: High Voltage Safety
Module 2: Shutting Off the High Voltage System
Module 3: Hybrid System Diagnosis
Module 4: Pathfinder Hybrid Brake Control System
Module 5: QR25DER Engine Systems
Module 6: Pathfinder Traction Motor System
Module 7: Pathfinder Hybrid Clutch Control
Module 8: Vehicle Sound for Pedestrian (VSP) System
Upon completion of this course, you will be able to:

- Given a service manual and owner’s manual for a Nissan hybrid electric vehicle, you will be able to locate information regarding high voltage systems and safety. You will be able to describe the precautions that must be taken when working on a hybrid power train and identify the Personal Protection Equipment (PPE) that must be worn.

- Given a Nissan Pathfinder Hybrid Electric Vehicle, and the appropriate personal protection equipment, you will be able to shut off the high voltage system and verify it is safe for repairs.

- Given a Nissan Pathfinder Hybrid Electric Vehicle, you will use CONSULT and service manual information to isolate a fault in the Hybrid Control System.

- Given a Nissan Pathfinder Hybrid Electric Vehicle, a CONSULT and the appropriate service manual you will be able to explain the operation of the cooperative regenerative brake system used in the front engine front wheel drive platform hybrid electric vehicle.

- Given a Nissan Pathfinder Hybrid Electric Vehicle, you will be able to monitor systems and components unique to the QR25DER engine.

- Given a Nissan Pathfinder Hybrid Electric Vehicle, the CONSULT application and the appropriate service manual you will complete the diagnostic process for a concern in the traction motor system.

- Given a Nissan Pathfinder Hybrid Electric Vehicle, the appropriate service manual, and CONSULT you will be able to monitor and explain the operation of the clutch system used in the hybrid power train.

- Given a Nissan Pathfinder Hybrid Electric Vehicle, The CONSULT application, and the appropriate service manual, you will be able to explain the operation and inspect the function of the Vehicle Sound for Pedestrian (VSP) system.
Course Procedures

Class begins promptly at 8:00 a.m. Please be in your seat and ready to begin at that time. Please silence your cell phones.

Class ends when all the modules on the sign-off page of your guidebook are initialed by the instructor. Nissan designs training so that most technicians should be able to complete all activities in the time allotted for the course. If you are unable to complete the requirements of the course in the time provided, your instructor will discuss options with you to receive course credit.

You are responsible for learning the techniques and procedures featured in this course. It is important you take as much time as you need to learn the skills presented in the course material. If you cannot complete the requirements of the course in the time provided, your instructor will work with you and your dealership and help you complete the course.

Text:

The text contains information relating to the procedures, features and technology contained in the material of this course. The instructor may assign reading from the text as homework, and some of the text may help you answer questions included in the activities of this course. Read the text section for detailed information regarding the technology featured in this training. It is recommended that you save the text and use it in the future as a resource.

Course Map:

The course map indicates the order in which the modules should be completed. In the case of some training courses, certain modules must be completed before you begin other modules.

Modules:

1. Begin the module by reading the Objective, Relevance, Resources, and Skill Check on the first page. This information will present the basis for the skills included in the module.
2. Read each step carefully to determine the appropriate actions or procedures the modules are designed to impart.
3. Pay attention to the Notes, Cautions, and Service Tips included in the module. In many instances, they will help you derive the answer to questions included in the module and will help you develop the skill sets intended by the design.
4. You will probably be working with one or more technicians during this course. Follow these basic guidelines to work effectively as a team:
 - Take responsibility to understand and perform each step yourself.
 - When using diagnostic tools (CONSULT, digital multi-meters, etc.), be sure to check the on-screen results yourself and hand the tool to the other members of your group so they can confirm the results as well.
- If you are expected to test or remove and inspect a component, perform these proce-
dures yourself and give the same opportunity to other members of your team.

- Be patient. Everyone works at different speeds. You are responsible to be able to perform
each module objective - and you are responsible to ensure that others working with you
can complete the skill check.

- Complete all questions on the worksheet. In some cases, the worksheet may give you the
opportunity to skip some steps, for example - you may not need to follow the instructions
for booting CONSULT if you are already confident using the tool. If your co-workers wish
to complete these instructions, be patient as they perform these steps.

- Treat the training center vehicles as if they were a customer’s car. However if you damage
a vehicle in the course of completing a module, notify the instructor immediately. Some
components such as trim pieces or wire connectors may be damaged during testing. We
expect these occasional problems and need to know about them as soon as they occur.

- Return the vehicle to the condition it needs to be in for the next group of technicians to
complete the workstation. For example, reset the bugs if applicable, return tools to the
workbench or tool box and straighten up the work area.

- Contact the instructor when you have com

_ Resources:

Resources may include ASIST, CONSULT service manuals, digital multi-meters, hand tools,
special service tools, and vehicle parts. If the ASIST terminal is not working properly or has not
been updated, please notify your instructor.

Monitor the battery power for CONSULT and connect it to the charger as needed. For some
courses we expect you to be comfortable using CONSULT for testing the CAN system and
accessing Self Diagnosis, Data Monitor, Active Test and Work Support. Contact your instructor
if you are not familiar using these applications. Contact the instructor if you have any questions
about using the listed resources or, there is a problem with any of the resources you will need to
complete the module.

_ PowerPoint Notes:

The classroom discussion highlights information you will practice during completion of the mod-
ules. Make notes and ask questions during the discussion and you will learn information that will
help you complete the worksheet objectives.
Technician Creed and Code of Repair

This vehicle is the personal property of the customer. The customer’s desire is: I correctly service / repair their vehicle today.

My desire is: He / She returns to my place of business for additional service and repairs unrelated to today’s visit.

It is my choice regarding the quality of repair I make today. I will do all I can to gain the customer’s trust while servicing and repairing their vehicle.

ATTITUDE IS EVERYTHING!
Welcome to Nissan HEV Technologies
Hybrid Introduction

Current Nissan hybrids use the Pure Drive Hybrid system. This is a one motor, two clutch parallel hybrid system that achieves improved fuel economy while maintaining driving performance by doing the following:

- Switching to EV mode during idle, low-speed driving, and other driving situations where the engine is not needed to conserve fuel
- Charging the high-voltage battery during braking and deceleration
- Using the combustion engine during passing, climbing, and other driving situations when the engine is needed
- Using a combination of engine and electric motor to provide optimum power and torque when required

Because the engine can be completely disengaged when needed, all motor power can be converted into driving force. This eliminates friction and provides efficient charging and discharging. The system provides a near-seamless transition from full-EV mode to varying degrees of power assist operation, and also a wide EV mode drive range. The system provides compact packaging to allow spacious passenger and cargo capacities while maintaining simplicity in design.
Effects of Current on the Human Body

- Voltages exceeding 60 volts DC or 25 volts (RMS) AC are considered dangerous
- Current flow between 100 and 200 milliamps through a human body are usually fatal

<table>
<thead>
<tr>
<th>Current</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe current values</td>
<td></td>
</tr>
<tr>
<td>1 mA or less</td>
<td>Causes no sensation – not felt</td>
</tr>
<tr>
<td>1 mA to 8 mA</td>
<td>Sensation of shock, not painful, individual can let go at will because muscular control is not lost</td>
</tr>
<tr>
<td>Unsafe current values</td>
<td></td>
</tr>
<tr>
<td>8 mA to 15 mA</td>
<td>Painful shock, individual can let go at will because muscular control is not lost</td>
</tr>
<tr>
<td>15 mA to 20 mA</td>
<td>Painful shock, control of adjacent muscles is lost, victim can not let go</td>
</tr>
<tr>
<td>50 mA to 100 mA</td>
<td>Ventricular fibrillation, a heart condition that can result in death is possible at this current level</td>
</tr>
<tr>
<td>100 mA to 200 mA</td>
<td>Ventricular fibrillation occurs</td>
</tr>
<tr>
<td>200 mA and over</td>
<td>Severe burns, severe muscular contractions, so severe that chest muscles clamp the heart and stop it for the duration of the shock (This prevents ventricular fibrillation)</td>
</tr>
</tbody>
</table>
High-voltage Precautions

All high-voltage system wiring is identified with orange insulated wrapping.

- Follow all precautions when working on or near high-voltage wiring and components

Underbody High-voltage Wiring

High-voltage Battery Wiring
High-voltage Warning Labels

- If power switch is set to "READY to DRIVE", the high-voltage system is powered up and potentially hazardous
- In EV Mode, the engine could start at any time to charge the lithium-ion battery
- If possible, remove the I-key during vehicle service
READY to DRIVE Indicator - Altima

- When the ignition is in the READY mode, the IC engine may start at any time
- Before service, be sure that ignition is OFF

HEV Unique Indicators

System READY to DRIVE Indicator

- Illuminates when the hybrid system is ready
- Vehicle may start at any time, even when in PARK
- When servicing a vehicle, make sure the indicator is OFF

System warning

- Illuminates when the hybrid system malfunctions
High-voltage Vehicle in Service Area

When high-voltage systems are being serviced or repaired

- The work area should be clean and dry, and have high-voltage warning posted
- Warning placards may be printed from the service manual and posted on the vehicle
- Additional precautions such as a roof cone or warning tape are also recommended

- The vehicle contains parts that contain powerful magnets. If a person who is wearing a heart pacemaker or other medical device is close to these parts, the medical device may be affected by the magnets. Such persons must not perform work on the vehicle.

Personal Protection Equipment (PPE)

Eye Protection

- Safety glasses or goggles
- Should be worn when working on or around high-voltage systems or components
Personal Protection Equipment (PPE)

High-voltage insulated lineman’s gloves and leather protectors

- Must be 1000-volt (Class 0) natural rubber (Type 1)
- Inspect gloves daily for cuts, defects, dirt, oil/grease, etc. by inflating
- Check the Certification Date printed on the gloves, and recertify every 6 months
- Wear gloves when removing the service plug, testing high-voltage system or components, or when you are not certain the high-voltage battery has been disconnected
- Remove all jewelry before working on the vehicle

Personal Protection Equipment (PPE)

Leather Protectors

- Used to prevent damage to the rubber lineman’s gloves from sharp edges and corners
- Be sure the rubber lineman’s glove extends at least 2 in. (50 mm) beyond the leather protector
- Arc flash clothing or 100% cotton clothing with long sleeves should be worn
- The sleeves should be tucked into the rubber insulating glove
Personal Protection Equipment (PPE)

Insulated Shoes

- Insulated shoes must be Insulated Electrical Hazard, or EH rated
- Insulated shoes are to be worn while working on or around high-voltage systems
- This includes contacting the service plug, inverter, DC/DC converter, junction box, or when dealing with a vehicle that has been in a collision
- Technicians must provide insulated shoes that are free of pin-holes, damage, nails, metal tips, worn-out soles, oil, grease or soiling

Personal Protection Equipment (PPE)

Insulated Boots

- When water, oil, or other substances cannot be cleaned off the floor, insulated boots must be worn to prevent electrical shock
Personal Protection Equipment (PPE)

Insulated Rubber Mat

- Place on the floor when exposure to high voltage is possible
- Place on workbench before placing lithium-ion battery on the workbench
- May be used when EH rated safety shoes are not available

Insulated Blanket

- Place over the battery after removal
- Place over high-voltage components to prevent accidental contact during service or repairs
- Must roll the blanket for storage
- Certified every 12 months

Personal Protection Equipment (PPE)

Arc Flash Clothing

- Arc flash clothing is highly recommended when exposure to high-voltage arcing might occur
- High-voltage arc flash can cause severe burns to the skin and eyes similar to welding flash
Personal Protection Equipment (PPE)

Fire Extinguisher

- Use only a Class C fire extinguisher
- Water must never be used for battery chemical or electrical fires

Disabling the High-voltage System - Pathfinder

1. Set the power switch to OFF, remove and secure the I-key
2. Disconnect the negative 12-volt battery cable and cover the exposed terminal and cable end with insulating tape
Disabling the High-voltage System - Pathfinder

3. Remove and secure the service plug. Cover the connector with tape.
4. Wait for a minimum of 10 minutes after the service plug is removed before continuing service.
5. Perform the high-voltage shutoff confirmation procedure to insure all voltage has dissipated.

PPE must be used when working on the high-voltage system

Disabling the High-voltage System - Altima
Disabling the High-voltage System

- Removing the service plug splits the high voltage circuit in the lithium-ion battery in half
- PPE must be worn when removing the service plug

High-voltage Shutoff Confirmation (Potential Equalization)

This inspection is performed to ensure the voltage stored in the high-voltage systems has dissipated and is safe for repairs

- Personal Protection Equipment must be worn when conducting this inspection
- A voltmeter and test leads rated to at least 500 volts must be used
- After disabling the high-voltage system, measure the voltage across the terminals at the lithium-ion battery
- The specification is 5 volts or less
Insulation Resistance Test

Insulation resistance test is used to inspect the circuit insulation for decay

- Locates any weakness in the insulation of high-voltage components and circuits
- Compromised insulation can ‘leak’ to ground or into another circuit with lower potential
- The insulation resistance tester outputs 500 volts, so PPE is required
- The negative probe is placed on the component case
- The positive probe is placed on each terminal of the component connector
- Press and hold the TEST button until the reading stabilizes (up to 30 seconds)
- Compare results to the service manual specifications
- Use Fluke 1507, or equivalent

Equipotential Test (Ground Integrity)

- Verifies that unwanted resistance is not present between high-voltage component ground connections
- Used to test between two high-voltage components and between each high-voltage component case and ground
- Meter must be zeroed
- Resistance should be less than 0.1 ohm
Hybrid System Overview

Series Hybrid

With a series hybrid system, only one power flow path is possible. The electric motor always transmits power to the drive wheels. The combustion engine works as a generator to power the electric motor and to recharge the high-voltage battery.

- Uses a gasoline engine to drive a generator
- The generator provides electric energy to drive an electric motor
- The electric motor is used to drive the wheels
- Is essentially an electric vehicle with an on-board engine-driven generator
- The engine does not directly propel the vehicle
Parallel Hybrid

With a parallel hybrid system, two distinct power flow paths are possible because of the hybrid powertrain layout. The combustion engine or electric motor can transmit power to the drive wheels independently, and in many cases, can combine to transmit output together.

- Both the internal combustion engine and the electric motor can drive the wheels directly
- Control modules determine the percentage of power flow from the engine and electric motor

Degrees of Hybridization

<table>
<thead>
<tr>
<th>Hybrid Types and Configuration</th>
<th>Gasoline Engine Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro Hybrid</td>
<td>Uses the engine for principle operation along with start/stop technology.</td>
</tr>
<tr>
<td>Mild Hybrid</td>
<td>Propelled primarily by the engine, but can use the electric traction motor under certain low-load, low speed driving conditions.</td>
</tr>
<tr>
<td>Full Hybrid</td>
<td>Larger and stronger electric components that propel the vehicle just with the high voltage battery/electric motor, just the engine, or a combination of both.</td>
</tr>
<tr>
<td>Full EV</td>
<td>Only uses an electric motor for propulsion. Does not use a combustion engine. Plug-in charge capabilities.</td>
</tr>
<tr>
<td>Electric Motor Only</td>
<td></td>
</tr>
</tbody>
</table>
• **Micro Hybrid** – A micro hybrid is a vehicle with an integrated starter/generator that uses start/stop technology. When conditions are met, the engine turns off at complete stops, and re-starts instantly when the brake pedal is released. Some micro hybrids can recover limited amounts of energy through brake regeneration. Fuel economy increases from micro hybrid technology are limited.

• **Mild Hybrid** – Mild hybrids are propelled primarily by the combustion engine, but can be propelled by the electric motor alone under certain low-load, low-speed driving conditions. Mild hybrids often use a combination of power from the engine and electric motor to provide equivalent performance to gasoline-only models with larger combustion engines, with the benefit of increased fuel economy and reduced emissions.

• **Full Hybrid** – Full hybrids also include a combustion engine, a high-voltage battery, and an electric motor. The main difference between a mild and a full hybrid is the increased ability of a full hybrid to operate exclusively on electric power. Full hybrids usually include higher voltage batteries with increased storage capacity, enabling higher speed operation in electric mode.

• **Full EV** – Full EVs do not include a combustion engine and therefore, do not consume fuel or produce tailpipe emissions. Full EVs include high-voltage batteries with large storage reserves. Regenerative braking provides limited battery charging, but recharging is primarily accomplished by plugging the vehicle into an AC receptacle or recharging station.

Pure Drive Hybrid Concept

The Pure Drive Hybrid system adopts high performance lithium-ion battery and traction motor technologies and seamlessly blends advanced combustion engines for exhilarating performance and outstanding fuel economy.
Pure Drive Hybrid System

- Engine - QR25DER supercharged, variable valve timing, port fuel injection, liquid cooled intercooler
- Transmission – Next generation Xtronic® Continuously Variable Transmission (CVT)
- High-voltage Battery – 144-volt lithium-ion, located under the 3rd row seat

High-voltage System Components - Altima
Pure Drive Hybrid Operating Features

- Supercharged 2.5L engine achieves engine output equal to or greater than the 3.5L V6
- CVT allows the engine to stay at its optimum fuel economy point, providing increased fuel efficiency

Hybrid Energy Flow – At Rest

These images show the vehicle at rest, in the READY to DRIVE mode.
Hybrid Energy Flow – Battery/Traction Motor Only

In EV mode only the traction motor and the lithium-ion battery are used to drive the wheels.
- Vehicle speed in EV mode on the Pathfinder is limited due to the smaller battery and traction motor.

Hybrid Energy Flow – Engine Drive Only

The engine provides the power to drive the wheels when the load exceeds the traction motor’s ability to provide power.
Hybrid Energy Flow – Combined Engine/Traction Motor (Power Assist)

Combined engine/traction motor drive

- The engine and motor generator provide torque to the driven wheels when the HPCM sees a demand for full power, typically during moderate to heavy load conditions.

Hybrid Energy Flow – Engine Running, Charging Battery

Combustion engine running, battery charging

- Clutch 1 is engaged and the vehicle is stationary
- The combustion engine is being used to charge the lithium-ion battery
- If the battery state of charge is below about 40% and the Power switch is ON, the engine may start to charge the battery.
Hybrid Energy Flow – Deceleration and Brake Regeneration

Engine and regenerative brake charging

- When the accelerator is lifted and the vehicle slows down, the rear wheels will spin the traction motor (through the transmission) and the traction motor will charge the battery.

Hybrid Energy Flow – Engine Driving, Battery Charging

Engine driving and recharging the battery

- During low to moderate acceleration the engine provides both drive power and battery charging.
- Some of the power from the engine charges the lithium-ion battery while some powers the wheels.
Pathfinder Hybrid Component Locations

- Lithium-ion Battery Cooling Blower Motor
- Battery Junction Box and Lithium-ion Battery Controller (LBC)
- High-voltage Harness (Orange)
- HPCM (Lower Center Console)
- Service Plug
- DC to DC Converter
- Lithium-ion Battery
- Traction Motor
- Traction Motor Inverter
- Sub Radiator
- Electric Water Pump

Hybrid-specific Engine Systems
Pathfinder Engine

The Pathfinder uses a QR25DER 2.5-liter, inline 4-cylinder engine.

- Uses a Roots-type supercharger with intercooler for increased output
- Intercooler shares coolant with traction motor and inverter cooling system
- Engine normally started by the traction motor
- Includes a conventional 12-volt starter motor that starts the engine during extreme cold weather conditions or low state of charge of the lithium-ion battery

Pathfinder Engine - Supercharger

The Pathfinder uses a QR25DER 2.5-liter, inline 4-cylinder engine

- Roots-type multi-rotor supercharger driven off crankshaft pulley
- Includes a bypass valve that is controlled by the ECM to regulate boost pressure in the air intake system
Hybrid-specific Transmissions
Pathfinder Transaxle – RE0F02H CVT

The Pathfinder Hybrid uses a modified version of the CVT found in the conventional Pathfinder.

- Continuously Variable Transmission
- Traction motor incorporated into transaxle assembly
- No torque converter
- Clutch 1 – multi-plate dry clutch inside CVT assembly
- Clutch 2 – wet clutch inside CVT assembly
- Sub Electric Oil Pump – used to cool clutch 2 under certain conditions
- Change transmission fluid every 30,000 miles
- Uses NS-3 fluid

NOTES:
High-voltage Battery System

High-voltage Battery Location - Pathfinder

- Photo shows the high-voltage battery assembly with the 3rd row seat and trim removed for clarity
- Cooling fan and ducts are located at the right-rear corner of the battery assembly
- The service plug is located on the right side of the battery pack
Lithium-ion Battery Structure - Pathfinder

- 40 cells (3.6 volts per cell)
- 3 Modules
- 1 Battery Pack (3 modules)
- Combined voltage is approximately 144 volts
- Individual modules are NOT serviceable

Cell
Two modules of 14 cells
One module of 12 cells
@3.6 volts-each

Module
3 modules in a pack

Battery Pack
1 pack per vehicle
144 volts
4.4 Ah
62 lbs. (28kg)

Pathfinder - High-voltage Battery Components

- HV battery temperature sensors are integral to the battery modules and are not serviceable
Pathfinder - Lithium-ion Battery Controller (LBC)

- Detects battery pack voltage, current, battery temperature, and voltage of each cell
- If cell voltage varies by more than approximately 200mV battery life is reduced
- Calculates input/output values and sends data to the HPCM
- Helps optimize cell voltage deviation
- Prevents over-voltage, over-current, and overheat conditions
- Detects decreased insulation resistance of the high-voltage circuit

Pathfinder - Battery Junction Box

- Located on the battery pack
- Contains the system main and pre-charge relays
- Houses a current sensor
Pathfinder - DC/DC Converter

- Located next to high-voltage battery
- Reduces the high voltage from the lithium-ion battery to approximately 13 volts to power electrical components
- Recharges the 12-volt battery
- Regulates voltage output

Pathfinder - High-voltage Battery Cooling System

- Located in right rear cargo area
- Provides cooling for the lithium-ion battery pack and DC to DC converter
- Consists of intake/exhaust ducts and a blower motor
- Blower motor speed is controlled by the LBC based on signals from current and temperature sensors, vehicle noise state, and other signals from the HPCM

[Image of DC/DC Converter and High-voltage Battery]

[Image of High-voltage Battery Cooling System]

[Image of View of Cargo Area from Above]
High-voltage Battery Location - Altima

Nickel Metal Hydride (NiMH) Battery Structure – Altima
Battery Smart Unit - Altima

1. Service Plug
2. Battery Temperature Sensor 0
3. Battery Smart Unit
4. SMRG
5. SMRB
6. Battery Current Sensor
7. HV Converter
8. Battery Temperature Sensor 3
9. Intake Temperature Sensor
10. Battery Temperature Sensor 2
11. Battery Temperature Sensor 1

High-voltage Battery Voltage Monitoring - Altima
High-voltage Battery Temperature Monitoring - Altima

1. HV battery module
2. Battery temperature sensor
3. Exhaust duct (installation slot)
4-A. Battery temperature sensor 3
4-B. Battery temperature sensor 2
4-C. Battery temperature sensor 1
4-D. Battery temperature sensor 0

High-voltage Battery Pack Cooling - Altima

Rear View Cross Section
14-volt DC/DC Converter - Altima

NOTES:
Electric Power Steering (EPS) - Altima

- Electric power steering (EPS) permits uninterrupted power steering operation, even with engine-OFF
Electric Power Steering (EPS) Components - Altima

- The electric motor is controlled by the EPS-CU and receives power from the 42-volt DC/DC converter

42-volt DC/DC Converter - Altima

- The 42-volt DC/DC converter reduces 244.8 volts from the HV battery to approximately 42 volts for the Electric Power Steering (EPS) system
Pathfinder Traction Motor System

- Traction motor system allows vehicle propulsion by electric power, or a combination of gasoline engine and electric power
- Traction motor can also function as a generator to recharge the lithium-ion battery
- System includes the traction motor, DC to AC inverter (traction motor inverter), and a liquid cooling system
- The traction motor and transmission are serviced as an assembly
- If any components are removed or replaced, the harness and motor must be checked for insulation resistance and equipotential (ground) integrity
Pathfinder Traction Motor Components

- Synchronous, 3-phase, permanent magnet motor
- 15kW (20 hp)
- Located inside the transmission

Rotation of Permanent Magnet Synchronous Motor

- Motor is constructed of:
 - Permanent magnet rotor
 - Multi coil stator
Motor Structure

Motor Revolution Sensor

- The hybrid control system must detect the exact position of the traction motor as it rotates.
- A revolution sensor or resolver is mounted on the transmission case, and is used by the traction motor inverter and Hybrid Powertrain Control Module (HPCM) to precisely monitor motor speed and position.
DC to AC Inverter (Traction Motor Inverter)

- Located in front left portion of engine compartment near 12-volt battery
- Inverter cover includes a safety interlock that disables high-voltage when cover is removed
- Includes inlet and outlet coolant ports for high-voltage cooling system

DC to AC Inverter

- The traction motor inverter converts high-voltage DC from the lithium-ion battery to 3-phase AC voltage to drive the traction motor
DC to AC Inverter

- Drives the traction motor by converting high-voltage DC from the Li-ion battery into 3-phase AC power
- Provides precise control of motor operation by varying the AC frequency when converting DC power to AC
- Allows the traction motor to function as a propulsion device and as a generator

<table>
<thead>
<tr>
<th>Component</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Controller</td>
<td>Receives signals and creates the pulse for driving the Insulated Gate Bipolar Transistors (IGBTs)</td>
</tr>
<tr>
<td>Driver</td>
<td>Converts the pulse signal (12 volts) from the motor controller to high voltage to drive the IGBTs</td>
</tr>
<tr>
<td>Power Module</td>
<td>Contains six IGBTs that perform switching, conversion of high-voltage DC to AC power, and supply AC power to the traction motor</td>
</tr>
<tr>
<td>Smoothing Condenser</td>
<td>Controls the voltage ripple that occurs as a result of IGBT switching</td>
</tr>
<tr>
<td>Current Sensors</td>
<td>Detects current supplied to traction motor and transmits current value feedback to the motor controller</td>
</tr>
<tr>
<td>Coolant Temperature Sensor</td>
<td>Detects the coolant temperature in the DC to AC inverter</td>
</tr>
<tr>
<td>Discharge Resistor</td>
<td>Discharges high voltage in case the DC to AC inverter cannot discharge the remaining voltage due to malfunction</td>
</tr>
</tbody>
</table>

DC To AC Inverter Circuit Diagram
Traction Motor/Inverter Cooling System

- Function is to dissipate heat generated by the traction motor and DC to AC inverter via the sub radiator
- System is self-contained using long-life coolant
- Includes a sub-radiator, coolant reservoir, electric coolant pump, intercooler, and hoses connected to and from the motor and inverter

Transaxle and Inverter Cooling - Altima

1. Coolant reservoir
2. Water pump with motor and bracket assembly
Hybrid Powertrain Control Module (HPCM)

- The HPCM is the main control unit for powertrain functions and hybrid control
- Uses inputs like throttle position, vehicle speed, gear range, high-voltage battery SOC, and temperature to determine the required output of the engine and traction motor
- Monitors high-voltage circuits and reports malfunctions
- Assists in the control of cooperative regenerative braking
High-voltage Start-up Sequence

When the ignition is moved from OFF to the READY position, the high-voltage system undergoes a start-up sequence to prepare the system for operation.

- HPCM energizes the pre-charge relay and system main relay 1
- This charges the capacitors in the traction motor inverter
- Then, the HPCM energizes system relay 2 and de-energizes the pre-charge relay, completing the high-voltage circuit
- This sequence prevents current surges and spikes in the system
High-voltage Electronic Control Unit (HV-ECU) - Altima

System Main Relay (SMR) - Altima

- The system main relay (SMR) is a relay unit that connects and disconnects the HV battery from the high-voltage circuit on command from the HV-ECU.
DC to AC Inverter - Altima

- Converts 245-volts DC current from the high-voltage battery in three-phase AC current for the motor/generators

Hybrid Modes of Operation

The hybrid powertrain can operate in various combinations of engine and traction motor modes.

- In many cases, the HPCM determines the appropriate mix of engine and traction motor drive based on driving conditions and maximizing fuel economy
- Engine temperature, high-voltage battery SOC, electrical load, and other factors also help determine the appropriate hybrid drive mode
Engine Idle/Battery Charging Mode

- When the lithium-ion battery state of charge is low, engine output is used to generate power from the traction motor to charge the lithium-ion battery.
- HPCM detects the lithium-ion battery status from the LBC and transmits a signal to the traction motor to charge the lithium-ion battery.
- Clutch 1 is engaged, Clutch 2 is disengaged.

Battery/Traction Motor Only

- Electrical power from the lithium-ion battery is used to drive the vehicle (low speed) using traction motor rotational torque only.
- Clutch 1 is disengaged and the engine is OFF.
- Clutch 2 is engaged, allowing the traction motor to drive the wheels.
Engine Drive/Charging High-voltage Battery

- The vehicle is driven by the combustion engine only
- If the battery state of charge is sufficient, the engine may also drive the wheels without driving the traction motor as a generator
- Clutch 1 and 2 are engaged

Power Assist Mode

- When the accelerator pedal is fully depressed, the engine assists the output torque from the traction motor providing maximum power to drive the vehicle
- HPCM engages Clutch 1 and Clutch 2, and transmits the output torque signal to the ECM and drive command signal to the inverter thus synchronizing the engine and traction motor output
Deceleration/Regeneration Mode

- When decelerating, regenerative braking uses the motion of the drive wheels to generate power from the traction motor and charge the lithium-ion battery.
- The regenerative torque that is generated when the traction motor is driven as a generator is used as braking force, acting similar to engine braking and reducing the load on the service brakes.
- On sufficiently long deceleration, the engine may be shut off to conserve fuel.
- Clutch 1 is disengaged, Clutch 2 is engaged.

Hybrid-specific Brake Systems
Hybrid Brake Systems

- Acceleration decreases the amount of stored energy in the battery. However, when the vehicle travels downhill or the driver decelerates, the electric motor is not needed to move the vehicle forward.
- During deceleration, the drivetrain spins the traction motor, generating current to recharge the high-voltage battery.
- This electrical load slows the vehicle, creating what is known as regenerative braking.
- The concept of using the conventional hydraulic brake system and the traction motor for combined braking is referred to as cooperative regenerative braking.

Pathfinder Brake System Components

- The Pathfinder uses a more conventional braking system with a vacuum booster.
- A vacuum reserve tank stores vacuum for engine-off assist applications.
Pathfinder Cooperative Regenerative Braking

- When the brake pedal is applied, hydraulic pressure is initially provided by the ABS actuator and the traction motor.
- After this initial phase, the brake booster starts to contribute to hydraulic braking pressure.
- During emergency brake applications, the brake booster will provide immediate hydraulic pressure with full assist.

![Pathfinder Cooperative Regenerative Braking Diagram]

Cooperative Regenerative Braking

- The Pathfinder cooperative regenerative braking functions and the control calculations are performed in the ABS actuator and control unit.

![Cooperative Regenerative Braking Diagram]
Electronically Controlled Brake System Components - Altima

- The electronically controlled brake system uses both regenerative braking and the conventional hydraulic braking systems.
Regenerative Braking Flowchart - Altima

Brake Hydraulics - Altima

- Due to the specialized nature of this brake system, bleeding air from the hydraulic lines requires the use of CONSULT-III. Refer to the service manual for specific information
Approaching Vehicle Sound for Pedestrians (VSP)

The Pathfinder vehicles feature an audible pedestrian warning system to alert pedestrians when the vehicle is operating in EV mode. The system uses a control unit and a speaker to emit a warning sound. The VSP system operates in three modes:

- Driving Start Sound
- Driving Sound
- Reverse Sound
VSP Components and Operation

- Controlled by the HPCM, and receives signals from the TCM, BCM, and combination meter
- VSP system activates the speaker only during EV mode with the engine off
- The VSP control unit is attached to the VSP speaker
- The VSP control unit operates the VSP speaker according to driving conditions

NOTES:
Hybrid-specific HVAC Components

Air Conditioning Compressor 2.5L QR25DER

- Serpentine belt driven
- Uses conventional R134a refrigerant, PAG oil and leak detection dye
- Uses conventional recycling/recharging station
Rear HVAC and High-voltage Battery Cooling System

- Dual purpose HVAC blower motor, used for cooling the high-voltage battery and 3rd row seating area
- Evaporator and adjustable blend door cased inside HVAC assembly

Electric Air Conditioning (A/C) System - Altima

- Like electric power steering, the electric air conditioning compressor can operate independently from the internal combustion engine
Electric Compressor - Altima

Refrigerant Oil - Altima

- The electric compressor requires special high-dielectric refrigerant oil
- Always use ND-OIL 11 refrigerant oil in these systems
- Use dedicated service equipment to avoid cross-contaminating the equipment when recovering refrigerant
- Refer to the ESM for specific service information
Electric Compressor Service – Altima

Before servicing the electric compressor:

- Remove the Service Disconnect Switch
- Perform high voltage safety tests
- After removal and installation of the electric A/C compressor, the Insulation Resistance and Equipotential tests must be performed before reconnecting the HV electrical connector
The CAN network on the Pathfinder is comprised of three systems: V-CAN1, V-CAN2, and HEV-CAN

- V-CAN is the conventional CAN system which is developed around the ECM
- HEV-CAN is a CAN system which deals specifically with the HEV system
Noise and Vibration Control

Electric Active Control Mount (E-ACM)

- E-ACM generates reverse-phase cancellation force from the engine mounts against engine vibration during start-up, idle and low speed operation
- E-ACM control module
E-ACM

- Normal engine vibration signal is monitored and a reverse-phase cancelling force is applied to the engine mount

Active Noise Control (ANC)

- ANC incorporates interior microphones to monitor cabin noise
- The cabin noise signal is sent to the Bose amplifier where it is analyzed to determine the noise characteristics
- The Bose amplifier outputs a reverse-phase sound through the audio system speakers to cancel the engine noise and reduce interior sound levels
Appendix
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>A/C</td>
<td>Air Conditioning</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
</tr>
<tr>
<td>CHG</td>
<td>Charge relay</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>EPS</td>
<td>Electric Power Steering</td>
</tr>
<tr>
<td>EV</td>
<td>Electric Vehicle</td>
</tr>
<tr>
<td>F/S</td>
<td>Fail Safe relay</td>
</tr>
<tr>
<td>GDC</td>
<td>Global Data Center</td>
</tr>
<tr>
<td>HEV</td>
<td>Hybrid Electric Vehicle</td>
</tr>
<tr>
<td>HPCM</td>
<td>Hybrid Powertrain Control Module</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating Ventilation and Cooling</td>
</tr>
<tr>
<td>ICE</td>
<td>Internal Combustion Engine</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bipolar Transistors</td>
</tr>
<tr>
<td>INV</td>
<td>Inverter</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>kg-m</td>
<td>Kilogram meter</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LB C</td>
<td>Lithium-ion Battery Controller</td>
</tr>
<tr>
<td>lb.-ft.</td>
<td>pound feet</td>
</tr>
<tr>
<td>LiB</td>
<td>Lithium-ion battery</td>
</tr>
<tr>
<td>li-ion</td>
<td>lithium-ion</td>
</tr>
<tr>
<td>LIN</td>
<td>Local Interconnect Network</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>LLC</td>
<td>Long Life Coolant</td>
</tr>
<tr>
<td>mA</td>
<td>Milliamp</td>
</tr>
<tr>
<td>M/C</td>
<td>Master Control relay</td>
</tr>
<tr>
<td>NAVI</td>
<td>Navigation system</td>
</tr>
<tr>
<td>Ni-MH</td>
<td>Nickel-Metal Hydride batteries</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protection Equipment</td>
</tr>
<tr>
<td>PTC</td>
<td>Positive Thermal Coefficient heater</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>SOC</td>
<td>State Of Charge</td>
</tr>
<tr>
<td>SOH</td>
<td>State of Health</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver Transmitter</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>VCM</td>
<td>Vehicle Control Module</td>
</tr>
<tr>
<td>VDC</td>
<td>Vehicle Dynamic Control</td>
</tr>
<tr>
<td>VSP</td>
<td>Vehicle Sound for Pedestrian</td>
</tr>
</tbody>
</table>